

Series: EFHG4 SET~3

प्रश्न-पत्र कोड Q.P. Code

31/4/3

रोल नं.				
Roll No.				

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

नोट	NOTE
(I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।	(I) Please check that this question paper contains 23 printed pages.
(II) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 39 प्रश्न हैं।	(II) Please check that this question paper contains 39 questions.
(III) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।	(III) Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथास्थान पर प्रश्न का क्रमांक अवश्य लिखें।	(IV) Please write down the Serial Number of the question in the answer-book at the given place before attempting it.
(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।	(V) 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answerbook during this period.

विज्ञान SCIENCE

निर्धारित समय : 3 घण्टे Time allowed : 3 hours अधिकतम अंक : 80 Maximum Marks : 80

31/4/3

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पिंढ़ए और उनका सख़्ती से पालन कीजिए :

- (i) इस प्रश्न-पत्र में कुल 39 प्रश्न हैं। **सभी** प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित किया गया है **क, ख, ग, घ** एवं **ड़।**
- (iii) खण्ड क प्रश्न संख्या 1 से 20 तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 1 अंक का है।
- (iv) खण्ड ख प्रश्न संख्या 21 से 26 तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंकों का है। इन प्रश्नों के उत्तर 30 से 50 शब्दों में दिए जाने चाहिए।
- (v) **खण्ड ग** प्रश्न संख्या 27 से 33 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंकों का है। इन प्रश्नों के उत्तर 50 से 80 शब्दों में दिए जाने चाहिए।
- (vi) खण्ड घ प्रश्न संख्या 34 से 36 तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंकों का है। इन प्रश्नों के उत्तर 80 से 120 शब्दों में दिए जाने चाहिए।
- (vii) खण्ड ड़ प्रश्न संख्या 37 से 39 तक 3 स्रोत-आधारित/प्रकरण-आधारित इकाइयों के मूल्यांकन के 4 अंकों के प्रश्न (उप-प्रश्नों सहित) हैं।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, कुछ खण्डों में आंतरिक विकल्प दिए गए हैं। इस प्रकार के प्रश्नों में केवल एक ही विकल्प का उत्तर दीजिए।

खण्ड – क

प्रश्न संख्या 1 से 20 तक के प्रश्नों में दिए गए चार विकल्पों में से सर्वाधिक उपयुक्त विकल्प चुनिए और लिखिए। गलत उत्तर का ऋणात्मक अंकन नहीं है। प्रत्येक प्रश्न 1 अंक का है।

- किसी आहार शृंखला में निम्नलिखित में से किस एक का विभिन्न पोषी स्तरों पर जैव आवर्धन होता जाता है?
 - (a) कार्बन मोनोऑक्साइड
 - (b) CFC's
 - (c) DDT
 - (d) खाद
- नीचे दी गयी आहार शृंखलाओं में से उस आहार शृंखला को चुनिए जो ऊर्जा के पदों में सबसे अधिक दक्ष है:
 - (a) घास \rightarrow टिड्डा \rightarrow मेंढक \rightarrow सर्प
 - (b) पौधे \rightarrow हरिण \rightarrow शेर
 - (c) पौधे \rightarrow मनुष्य
 - (d) पादप प्लवक \rightarrow प्राणि प्लवक \rightarrow छोटी मछली \rightarrow बड़ी मछली

31/4/3

1

General Instructions:

Read the following instructions very carefully and strictly follow them:

- (i) This question paper comprises 39 questions. All questions are compulsory.
- (ii) This question paper is divided into **five** sections -A, B, C, D and E.
- (iii) **Section** A Question Nos. 1 to 20 are multiple choice type questions. Each question carries 1 mark.
- (iv) **Section B** Question Nos. **21** to **26** are very short answer type questions. Each question carries **2** marks. Answer to these questions should be in the range of 30 to 50 words.
- (v) **Section C** Question Nos. 27 to 33 are short answer type questions. Each question carries 3 marks. Answer to these questions should in the range of 50 to 80 words.
- (vi) **Section D** Question Nos. **34** to **36** are long answer type questions. Each question carries **5** marks. Answer to these questions should be in the range of 80 to 120 words.
- (vii) **Section E** Question Nos. **37** to **39** are of 3 source-based/case-based units of assessment carrying **4** marks each with sub-parts.
- (viii) There is no overall choice. However, an internal choice has been provided in some sections. Only one of the alternatives has to be attempted in such questions.

SECTION - A

Select and write the most appropriate option out of the four options given for each of the questions 1 to 20. There is no negative marking for wrong answer. Each question carries 1 mark.

- 1. Which one of the following gets biomagnified at different levels in a food chain?
 - (a) Carbon monoxide
 - (b) CFC's
 - (c) DDT
 - (d) Manure
- 2. In the food chains given below. Select the most efficient food chain in terms of energy:
 - (a) Grass \rightarrow Grasshopper \rightarrow Frog \rightarrow Snake
 - (b) Plants \rightarrow Deer \rightarrow Lion
 - (c) Plants \rightarrow Man
 - (d) Phytoplankton \rightarrow Zooplankton \rightarrow Small Fish \rightarrow Big Fish

31/4/3

3

[P.T.O.]

1

3.	किसी तत्त्व 'M' के तीसरे कोश में उपस्थित इलेक्ट्रॉनों की संख्या उसके दूसरे कोश में	
	उपस्थित इलेक्ट्रॉनों की संख्या की 25% है। तत्त्व 'M' है :	1
	(a) सोडियम	
	(b) मैग्नीशियम	
	(c) ऐलुमिनियम	
	(d) कैल्सियम	
4.	प्रकाश के किसी पतले समान्तर पुंज के मार्ग में कोई प्रकाशिक युक्ति 'X' तिरछी रखी है। यदि	
	निर्गत प्रकाश पुंज पार्श्विक विस्थापित हो जाता है, तो युक्ति 'X' है :	1
	(a) समतल दर्पण	
	(b) उत्तल लेंस	
	(c) कांच का स्लैब	
	(d) कांच का प्रिज़्म	
5.	प्रतिरोध 'R' के किसी तार के टुकड़े को लम्बाई में (अनुदैर्घ्य) तीन सर्वसम भागों में काटा	
	गया है। इन तीनों भागों को फिर पार्श्व में संयोजित किया गया है। यदि इस संयोजन का तुल्य	
	प्रतिरोध R' है, तो R/R' का मान होगा :	1
	(a) 1/9	-
	(b) 1/3	
	(c) 3	
	(d) 9	
6.	निम्नलिखित में से किस एक स्थिति में रासायनिक अभिक्रिया नहीं होती है?	1
	(a) गर्मियों में कक्ष ताप पर दूध को खुला रखकर छोड़ देना	
	(b) अंगूरों का किण्वन	
	(c) नमी वाली वायु में किसी आयरन की कील को खुला छोड़ना	
	(d) ग्लेशियर (हिमनदी) का पिघलना	
7.	आर्द्र वायुमंडल में शुष्क हाइड्रोजन क्लोराइड गैस बनाने के लिए उत्पन्न गैस को रक्षक (शुष्क)	
	नली से गुजारा जाता है जिसमें भरा होता है :	1
	(a) कैल्सियम क्लोराइड	
	(b) कैल्सियम ऑक्साइड	
	(c) कैल्सियम हाइड्रॉक्साइड	
	(d) कैल्सियम कार्बोनेट	
31/	4/3	

3.	An element 'M' has 25% of the electrons filled in the third shell as in the second shell. The element 'M' is: (a) Sodium (b) Magnesium (c) Aluminium (d) Calcium	1
4.	An optical device 'X' is placed obliquely in the path of a narrow parallel beam of light. If the emergent beam gets displaced laterally, the device 'X' is: (a) plane mirror (b) convex lens (c) glass slab (d) glass prism	1
5.	A piece of wire of resistance 'R' is cut lengthwise into three identical parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R', then the value of R/R' is: (a) 1/9 (b) 1/3 (c) 3	1
6.	 (d) 9 In which one of the following situations a chemical reaction does not occur? (a) Milk is left open at room temperature during summer (b) Grapes get fermented (c) An iron nail is left exposed to humid atmosphere (d) Melting of glaciers 	1
7.	In order to prepare dry hydrogen chloride gas in humid atmosphere the gas produced is passed through a guard tube (drying tube) which contains: (a) Calcium chloride (b) Calcium oxide (c) Calcium hydroxide (d) Calcium carbonate	1
31/	/4/3 [P.T	.O.]

8.	निम्नलिखित में से उस हाइड्रोकार्बन को चुनिए जिसमें एक C–C आबन्ध और एक C≡C	
	आबन्ध होता है :	1
	(a) बेन्जीन	
	(b) साइक्लोहेक्सेन	
	(c) ब्यूटाइन	
	(d) प्रोपाइन	
9.	प्रोटीनों के संश्लेषण के लिए पौधों द्वारा मृदा से लिया जाने वाला आवश्यक तत्त्व है :	1
	(a) फॉस्फोरस	
	(b) नाइट्रोजन	
	(c) आयरन	
	(d) मैग्नीशियम	
10.	240 V की मेन्स द्वारा आपूर्ति किए जाने पर 4V; 6W अनुमतांक के कम से कम कितने	
	सर्वसम बल्बों को श्रेणी में संयोजित किया जाना चाहिए ताकि वे वांछित चमक से सुरक्षित	
	रूप से कार्य करें ?	1
	(a) 20	
	(b) 40	
	(c) 60	
	(d) 80	
11.	किसी विद्युत बल्ब का अनुमतांक 220 V; 11W है। 220 V की शक्ति आपूर्ति द्वारा	
	प्रचालित किए जाने पर चमकते समय इसके तन्तु (फिलामेन्ट) का प्रतिरोध क्या होता है?	1
	(a) 4400Ω	
	(b) 440Ω	
	(c) 400Ω	
	(d) 20Ω	

8.	Select from the following a hydrocarbon having one C–C bond and one C≡C bond: (a) Benzene (b) Cyclohexane	1
	(c) Butyne (d) Propyne	
9.	The essential element taken up from the soil by the plants to synthesize proteins is: (a) Phosphorus (b) Nitrogen (c) Iron (d) Magnesium	1
10.	The minimum number of identical bulbs of rating 4V; 6W, that can work safely with desired brightness, when connected in series with a 240 V mains supply is:	1
	(a) 20	
	(b) 40	
	(c) 60	
	(d) 80	
11.	An electric bulb is rated 220 V; 11W. The resistance of its filament when it glows with a power supply of 220 V is:	1
	(a) 4400Ω	
	(b) 440Ω	
	(c) 400Ω	
	(d) 20Ω	

31/4/3

- 12. लसीका के विषय में निम्नलिखित में से सही कथन चुनिए :
 - लसीका वाहिकाएं लसीका को शरीर के विभिन्न भागों तक ले जाती हैं जो अंत में बड़ी धमनियों में खुलती हैं।
 - लसीका में कुछ मात्रा में प्लैज़्मा, प्रोटीन और रुधिर कोशिकाएँ होती हैं। В.
 - लसीका में कुछ मात्रा में प्लैज़्मा, प्रोटीन और लाल रुधिर कोशिकाएँ होती हैं। C.
 - लसीका वाहिकाएं लसीका को शरीर के विभिन्न भागों तक ले जाती हैं जो अंत में बडी D. शिराओं में खुलती हैं।

इनमें सही कथन हैं:

- (a) A और B
- (b) B और D
- (c) A और C
- (d) C और D
- 13. गुलाब और केले जैसे पौधों ने निम्नलिखित में से किसे उत्पन्न करने की क्षमता खो दी है?
- 1

1

- (a) पुष्प
- कलिकाएं (b)
- बीज (c)
- (d) फल
- 14. जब मटर के शुद्ध लम्बे पौधों का मटर के शुद्ध बौने पौधों के साथ संकरण कराया जाता है, तो F_1 और F_2 संततियों के मटर के पौधों में लम्बे मटर के पौधों की प्रतिशतता होगी क्रमशः-1
 - 100%; 25% (a)
 - 100%; 50% (b)
 - 100%; 75% (c)
 - (d) 100%; 100%
- 15. उभयलिंगी पुष्प में नर युग्मक कहाँ उपस्थित होते हैं?

1

- परागकोश (a)
- (b) अण्डाशय
- (c) वर्तिकाग्र
- (d) तंतु

12.	Sele	ect TRUE statements about lymph from the following:	1
	A.	Lymph vessels carry lymph through the body and finally open in larger arteries.	ito
	В.	Lymph contains some amount of plasma, proteins and blood cells.	
	C.	Lymph contains some amount of plasma, proteins and red blo cells.	od
	D.	Lymph vessels carry lymph through the body and finally open in larger veins.	nto
	The	true statements are :	
	(a)	A and B	
	(b)	B and D	
	(c)	A and C	
	(d)	C and D	
13.	Plan	nts like rose and banana have lost the capacity to produce:	1
	(a)	flowers	
	(b)	buds	
	(c)	seeds	
	(d)	fruits	
14.	perc	en a pure-tall pea plant is crossed with a pure-dwarf pea plant, the centage of tall pea plants in F_1 and F_2 generation pea plants will sectively:	
	(a)	100%; 25%	
	(b)	100%; 50%	
	(c)	100%; 75%	
	(d)	100%; 100%	
15.	In a	bisexual flower the male gametes are present in the:	1
	(a)	anther	
	(b)	ovary	
	(c)	stigma	
	(d)	filament	
~1	1412		ID T O I
31	/4/3 [*]	9	[P.T.O.]

16. 20 cm फोकस दूरी के किसी लेंस का उपयोग करके पर्दे पर -1 आवर्धन का प्रतिबिम्ब प्राप्त करने के लिए बिम्ब-दूरी होनी चाहिए: 1 20 cm से कम (a) (b) 30 cm 40 cm (c) 80 cm (d) प्रश्न संख्या 17 से 20 तक अभिकथन (A) और कारण (R) पर आधारित प्रश्न हैं। इन प्रश्नों के उत्तर नीचे दिए (a), (b), (c) और (d) में से उचित विकल्प चुनकर दीजिए : अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है। अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R) अभिकथन (A) की सही व्याख्या **नहीं** करता है। अभिकथन (A) सही है, परन्तु कारण (R) गलत है। अभिकथन (A) गलत है, परन्तु कारण (R) सही है। अभिकथन (A): सरीसृपों में संततियों का लिंग निषेचित अण्डे (युग्मक) के उष्मायन ताप द्वारा सुनिश्चित होता है। कुछ जीवों में लिंग निर्धारण आनुवंशिकतः नहीं होता है। कारण (R): 1 18. अभिकथन (A): बड़े जन्तुओं में ऑक्सीजन, जन्तुओं के शरीर के विभिन्न भागों में आसानी से पहुंच सकती है। श्वसन वर्णक वायु से ऑक्सीजन लेकर उसे शरीर के ऊत्तकों तक पहुंचाते कारण (R): हैं। 1 19. अभिकथन (A): सांद्र नाइट्रिक अम्ल का तनुकरण जल को सदैव धीरे-धीरे तथा अम्ल को लगातार हिलाते हुए जल मिलाकर किया जाता है। सांद्र नाइट्रिक अम्ल जल में आसानी से घुल जाता है। कारण (R): 1 20. अभिकथन (A): श्वेत प्रकाश कांच के प्रिज़्म द्वारा सात रंगों में विक्षेपित (परिक्षेपित) हो जाता है। जब कोई श्वेत प्रकाश पुंज किसी कांच के प्रिज़्म से गुजरता है, तो लाल कारण (R): प्रकाश निम्नतम मुड़ता है तथा बैंगनी प्रकाश अधिकतम मुड़ता है। 1

16.		e of magnification -1 on a screen using a lens of foca	
		e object distance must be :	1
	(a) Less than 2(b) 30 cm	to em	
	(c) 40 cm		
	(d) 80 cm		
Ans		20 consist of two statements – Assertion (A) and Reas ions selecting the appropriate option (a), (b), (c) and	` ′
(a)	Both, Assertion explanation of A	(A) and Reason (R) are true, and Reason (R) is the correct Assertion (A).	t
(b)	ŕ	(A) and Reason (R) are true, and Reason (R) is not the ion of Assertion (A).	e
(c)	Assertion (A) is	true, but Reason (R) is false.	
(d)	Assertion (A) is	false, but Reason (R) is true.	
17.	Assertion (A):	In reptiles, the temperature at which the fertilized eggs are kept decides the sex of the offsprings.	S
	Reason (R):	Sex is not genetically determined in some animals.	1
18.	Assertion (A):	In large animals, oxygen can reach different parts of the animal's body easily.	Э
	Reason (R):	Respiratory pigments take up oxygen from the air and carry it to body tissues.	d 1
19.	Assertion (A):	Concentrated nitric acid is diluted by adding water slowly to acid with constant stirring.	r
	Reason (R):	Concentrated nitric acid is easily soluble in water.	1
20.	Assertion (A):	White light is dispersed by a glass prism into sever colours.	1
	Reason (R):	The red light bends the least while the violet the mos when a beam of white light passes through a glass prism.	
31	/4/3		P.T.O.]

Get More Learning Materials Here :

खण्ड – ख

प्रश्न संख्या 21 से 26 तक अतिलघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 2 अंक का है।

21. श्याम-श्वेत फोटोग्राफी में उपयोग किए जाने वाले यौगिक का नाम लिखिए। उल्लेख कीजिए कि होने वाली अभिक्रिया ऊष्माक्षेपी होती है अथवा ऊष्माशोषी। अपने उत्तर की पृष्टि कीजिए।

2

22. (A) एक तत्त्व से दूसरे तत्त्व में इलेक्ट्रॉन-स्थानान्तरण द्वारा कैल्सियम क्लोराइड बनना दर्शाइए। कैल्सियम और क्लोरीन की परमाणु संख्या क्रमशः 20 और 17 है।

2

अथवा

(B) "ऐलुमिनियम ऑक्साइड उभयधर्मी ऑक्साइड है।" होने वाली अभिक्रियाओं के रासायनिक समीकरण देकर इस कथन की पुष्टि कीजिए।

2

23. संवहन बण्डल का निर्माण करने वाले ऊत्तकों के नाम लिखिए। पादपों में इनके कार्य का उल्लेख कीजिए।

2

24. (A) किसी समबाहु कांच के प्रिज़्म द्वारा किसी प्रकाश किरण के अपवर्तन को दर्शाने के लिए किरण आरेख खींचिए। इस आरेख पर वह कोण अंकित कीजिए जिस पर कोई निर्गत किरण आपतित किरण की दिशा से मुड़ जाती है तथा इस कोण का नाम भी लिखिए।

2

अथवा

(B) जरा-दूरदृष्टिता से पीड़ित व्यक्तियों के दृष्टि-दोष के संशोधन के लिए आवश्यक लेंसों के प्रकार का नाम लिखिए। इस दोष के संशोधन के लिए उपयोग किए जाने वाले सामान्य लेंसों की संरचना लिखिए तथा इस प्रकार के लेंसों की अभिकल्पना का कारण लिखिए।

2

25. किसी प्रवाह आरेख की सहायता से व्याख्या कीजिए कि मानव में बच्चे के लिंग (नर अथवा मादा) के लिए पिता उत्तरदायी होता है।

2

26. किसी सीधे धारावाही चालक के कारण चुम्बकीय क्षेत्र रेखाओं का पैटर्न खींचिए। इस आरेख पर विद्युत धारा के प्रवाह की दिशा और उत्पन्न चुम्बकीय क्षेत्र की दिशा अंकित कीजिए। उस नियम का नाम लिखिए जो इस प्रकरण में चुम्बकीय क्षेत्र की दिशा निर्धारित करने में हमारी सहायता करता है।

^{*31/4/3*}

SECTION - B

Question Nos. 21 to 26 are very short answer type questions. Each question carries 2 marks.

21. Name the compound used in black and white photography. State whether the reaction that occurs is exothermic or endothermic. Give justification for your answer.

2

22. (A) Show the formation of calcium chloride by the transfer of electrons from one element to the other. Atomic Number of calcium and chlorine is 20 and 17 respectively.

2

OR

(B) "Aluminium oxide is an amphoteric oxide." Justify this statement giving chemical equation for the reactions involved.

2

23. Name the tissues which form the vascular bundle. State their function in plants.

2

24. (A) Draw a ray diagram to show the refraction of a ray of light passing through an equilateral glass prism. Mark the angle through which the emergent ray bends from the direction of the incident ray and also name it.

2

OR

(B) Name the type of lenses required by the persons for the correction of their defect of vision called presbyopia. Write the structure of the lenses commonly used for the correction of this defect giving reason for such designs.

2

25. Explain with the help of a flow chart that in human beings father is responsible for the sex (male or female) of the child.

2

Draw the pattern of magnetic field lines due to a current carrying straight conductor. Mark on it the direction of current in the conductor and the direction of the magnetic field developed. Name the rule that helps us to determine the direction of magnetic field lines in this case.

2

31/4/3

खण्ड 🗕 ग

प्रश्न संख्या 27 से 33 तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 3 अंक का है।

27. यदि हम 18 cm फोकस दूरी के किसी अवतल दर्पण का उपयोग करके किसी बिम्ब का आभासी और विवर्धित प्रतिबिम्ब प्राप्त करना चाहते हैं, तो हमें बिम्ब को कहां रखना चाहिए? अपने उत्तर की पृष्टि के लिए दर्पण सूत्र का उपयोग करके +2 आवर्धन का प्रतिबिम्ब प्राप्त करने के लिए बिम्ब दूरी निर्धारित कीजिए।

3

28. अशुद्ध धातु को परिष्कृत करने में सर्वाधिक उपयोग में लायी जाने वाली विधि का नाम और उसका विवरण लिखिए।

3

29. कोशिकीय श्वसन का पहला चरण क्या है? कोशिका के किस भाग में यह सम्पन्न होता है? किसी मानव कोशिका में ग्लूकोज़ के विखण्डन की प्रक्रिया के लिए समीकरण लिखिए:

3

- (i) ऑक्सीजन की उपस्थिति में
- (ii) ऑक्सीजन की कमी के कारण
- **30.** (A) हम किसी रासायनिक समीकरण का संतुलन क्यों करते हैं? उस नियम का नाम और नियम लिखिए जो किसी रासायनिक समीकरण के संतुलन के लिए निर्दिष्ट करता है। नीचे दिए गए रासायनिक समीकरण को संतुलित कीजिए :

3

 $Zn + H_3 PO_4 \rightarrow Zn_3 (PO_4)_2 + H_2$

अथवा

(B) अवक्षेपण अभिक्रिया की परिभाषा लिखिए। इसका कोई उदाहरण दीजिए तथा उसमें होने वाली अभिक्रिया को संतुलित रासायनिक समीकरण के रूप में व्यक्त भी कीजिए।

3

31. अपघटक (अपमार्जक) किन्हें कहते हैं? दो उदाहरण दीजिए। उल्लेख कीजिए कि ये किसी पारितंत्र में संतुलन किस प्रकार बनाए रखते हैं।

3

32. किसी धारावाही विद्युत परिपथ में दो बिन्दुओं के बीच "विभवान्तर" की परिभाषा लिखिए। इसके S.I. मात्रक का नाम और उसकी परिभाषा दीजिए। इसे कार्य और आवेश के S.I. मात्रकों के पदों में व्यक्त भी कीजिए।

3

33. बहुकोशिकीय जीवों में विद्युत आवेगों की कोई दो सीमाएं लिखिए। इन जीवों में कोशिकाओं के बीच संचारण के लिए विद्युत आवेगों की तुलना में रासायनिक संचार बेहतर क्यों होता है?

3

SECTION - C

Question Nos. 27 to 33 are short answer type questions. Each question carries 3 marks.

27. If we want to obtain a virtual and magnified image of an object by using a concave mirror of focal length 18 cm, where should the object be placed? Use mirror formula to determine the object distance for an image of magnification +2 produced by this mirror to justify your answer.

3

28. Name and describe the most widely used method for refining impure metals?

3

29. What is the first step of cellular respiration? In which part of the cell does it occur? Write the equation for the process of breakdown of glucose in a human cell:

3

- in the presence of oxygen (i)
- (ii) due to lack of oxygen
- **30.** (A) Why do we balance a chemical equation? Name and state the law that suggests the balancing of a chemical equation? Balance the following chemical equation:

3

$$Zn + H_3 PO_4 \rightarrow Zn_3 (PO_4)_2 + H_2$$

(B) Define a precipitation reaction. Give its example and also express the reaction that occurs in the form of a balanced chemical equation.

3

31. What are decomposers? Give two examples. State how they maintain a balance in an ecosystem.

3

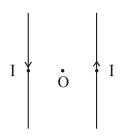
Define the term "potential difference" between two points in an electric circuit carrying current. Name and define its S.I. unit. Also express it in terms of S.I. unit of work and charge.

3

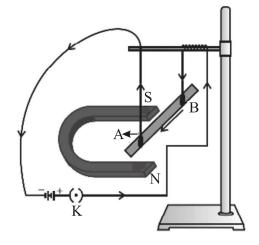
State two limitations of electrical impulses in multicellular organisms. Why is chemical communication better than electrical impulses as a means of communication between cells in multicellular organisms?

3

31/4/3



प्रश्न संख्या 34 से 36 तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंक का है।


34. (A) (i) आरेख में दर्शाए अनुसार दो समान्तर सीधे चालकों, जिनसे विपरीत दिशाओं में समान परिमाण की धारा '।' प्रवाहित हो रही है, की चुम्बकीय क्षेत्र रेखाओं का पैटर्न आरेखित कीजिए। इन दोनों चालकों से समान दूरी पर स्थित बिन्दु O पर चुम्बकीय क्षेत्र की दिशा दर्शाइए। (यह मानिए कि चालकों को आयताकार कार्डबोर्ड में बोर्ड के अभिलम्बवत् प्रविष्ट कराया गया है।)

- (ii) हमारे घरों में A.C. विद्युत शक्ति की आपूर्ति 220 V पर होती है। मेंस से धारा प्राप्त करने के लिए विद्युत इस्तरी अथवा विद्युत तापक जैसी युक्तियों में उपयोग किए जाने वाले केबिलों में तीन विभिन्न रंगों - लाल, काले और हरे के विद्युतरोधी आवरण वाले तीन तार होते हैं।
 - (a) इन तीन विभिन्न तारों को क्या कहते हैं? रंगों के अनुसार इनके नाम लिखिए।
 - (b) लाल तार और काले तार के बीच कितना विभवान्तर होता है?
 - (c) हरे विद्युतरोधी आवरण वाले तार की उस प्रकरण में क्या भूमिका होती है, जब किसी विद्युत साधित्र के धातु के आवरण में अचानक विद्युत धारा का कोई क्षरण हो जाता है?

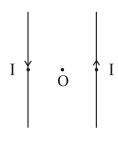
अथवा

- दी गयी प्रायोगिक व्यवस्था में यह किस **(B)** (i) प्रकार दर्शाया जा सकता है कि :
 - (a) किसी चुम्बकीय क्षेत्र में रखे जाने पर धारावाही चालक AB पर कोई बल आरोपित होता है।
 - (b) लगने वाले बल की दिशा को दो ढंगों से उत्क्रमित किया जा सकता है।

- (ii) लगने वाले बल का परिमाण उच्चतम कब होगा?
- (iii) फ्लेमिंग का वामहस्त नियम लिखिए।

5

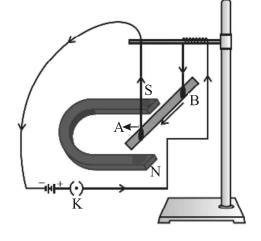
5



SECTION - D

Question Nos. 34 to 36 are long answer type questions. Each question carries 5 marks.

34. (A) (i) Draw the pattern of the magnetic field lines for the two parallel straight conductors carrying current of same magnitude 'I' in opposite directions as shown. Show the direction of I magnetic field at a point O which is equidistant from the two conductors. (Consider that the conductors are inserted normal to the plane of a rectangular cardboard.)



- In our houses we receive A.C. electric power of 220 V. In electric iron or electric heater cables having three wires with insulation of three different colours – red, black and green are used to draw current from the mains.
 - What are these three different wires called? Name them colourwise.
 - (b) What is the potential difference between the red wire and the black wire?
 - What is the role of the wire with green insulation in case (c) of accidental leakage of electric current to the metallic body of an electrical appliance?

5

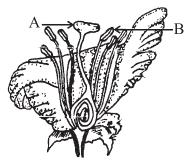
OR

- using **(B)** (i) By the given experimental set-up. How can it be shown that:
 - a force is exerted on the (a) current-carrying conductor AB when it is placed in a magnetic field.

- (b) the direction of force can be reversed in two ways.
- When will the magnitude of the force be highest?
- (iii) State Fleming's left hand rule.

5

31/4/3



35. (A) दिए गए आरेख के अंकित भागों 'A' और 'B' के नाम लिखिए। किसी पुष्प में 'B' के उत्पाद के 'A' पर पहुंचने से फल के बनने तक की प्रक्रिया में होने वाले परिवर्तनों का विस्तार से वर्णन कीजिए।

5

5

5

5

अथवा

- (B) मानव मादा जनन तंत्र में निषेचन होने के पश्चात् होने वाले परिवर्तनों का उल्लेख कीजिए। इस प्रक्रिया में प्लैसेन्टा की भूमिका लिखिए। क्या होता है जब अण्ड का निषेचन नहीं होता है ?
- **36.** (A) कोई कार्बन यौगिक 'A' आधिक्य सांद्र H_2SO_4 के साथ गर्म किए जाने पर कोई अन्य यौगिक 'B' बनाता है जो निकैल उत्प्रेरक की उपस्थिति में हाइड्रोजन गैस के 1 मोल से संकलन करके कोई यौगिक 'C' बनाता है। यौगिक 'C' दहन किए जाने पर कार्बन डाइऑक्साइड के दो मोल तथा पानी के तीन मोल बनाता है। 'A', 'B' और 'C' को पहचानिए और इनकी संरचनाएँ लिखिए। होने वाली अभिक्रियाओं के समीकरण दीजिए। 'A' से 'B' के बनने में सांद्र सल्फ्यूरिक अम्ल की भूमिका का उल्लेख भी कीजिए।

अथवा


- (B) किसी कार्बन यौगिक 'A' का अचारों के परिरक्षक के रूप में उपयोग किया जाता है तथा इसका आण्विक सूत्र $C_2H_4O_2$ है। यह यौगिक एथेनॉल से अभिक्रिया करके कोई मृदु गंध का यौगिक 'B' बनाता है।
 - (i) यौगिक 'A' को पहचानिए और इसकी संरचना लिखिए।
 - (ii) यौगिक 'A' की एथेनॉल से अभिक्रिया, जिसमें 'B' बनता है, का रासायनिक समीकरण लिखिए। इस अभिक्रिया में किसी अम्ल की उपस्थिति की भूमिका का उल्लेख कीजिए।
 - (iii) हम यौगिक 'B' से यौगिक 'A' को किस प्रकार पुनः प्राप्त कर सकते हैं?
 - (iv) एथेनॉल से 'A' को किस प्रकार प्राप्त किया जा सकता है?
 - (v) यौगिक 'A' की धोने के सोडे के साथ अभिक्रिया में उत्पन्न होने वाली गैस का नाम लिखिए।

and 'B' in the given diagram.

Write in detail the changes that take place in a flower when the product of 'B' reaches 'A' till a fruit is formed.

5

5

5

5

OR

- **(B)** In human female reproductive system state the changes that take place once fertilisation has taken place. Write the role of placenta in this process. What happens when the egg is not fertilised?
- **36. (A)** A carbon compound 'A' on heating with excess conc. H₂SO₄ forms a compound 'B', which on addition of one mole of hydrogen gas in the presence of nickel catalyst forms a compound 'C'. 'C' on combustion in air forms 2 moles of carbon dioxide and 3 moles of water. Identify 'A', 'B' and 'C' and write their structures. Give chemical equations of the reactions involved. Also state the role of concentrated sulphuric acid in the formation of 'B' from 'A'.

OR

- **(B)** A carbon compound 'A' is widely used as a preservative in pickles and has a molecular formula $C_2H_4O_2$. This compound reacts with ethanol to form a sweet smelling compound 'B'.
 - (i) Identify the compound 'A' and write its structure.
 - (ii) Write the chemical equation for the reaction of 'A' with ethanol to form compound 'B'. State the role of presence of an acid in the reaction.
 - (iii) How can we get compound 'A' back from 'B'?
 - (iv) How can 'A' be obtained from ethanol?
 - (v) Name the gas produced when compound 'A' reacts with washing soda.

31/4/3

प्रश्न संख्या 37 से 39 तक स्रोत-आधारित/प्रकरण-आधारित प्रश्न हैं।

- 37. किसी कक्षा में छात्रों ने कार्डबोर्ड की एक मोटी शीट लेकर उसके केन्द्र पर एक छोटा छिद्र बनाया। इस छोटे छिद्र पर सूर्य के प्रकाश को पड़ने दिया और खेत प्रकाश का एक महीन पुंज प्राप्त किया। फिर उन्होंने कांच का कोई प्रिज़्म लेकर उसके एक फलक पर इस श्वेत प्रकाश को पड़ने दिया। फिर उन्होंने धीरे-धीरे इस प्रिज़्म को तब तक घुमाया जब तक कि प्रिज़्म के विपरीत फलक से निकलने वाला प्रकाश पास में रखे पर्दे पर पडना आरम्भ न हो जाए। उन्होंने पर्दे पर प्रकाश की इस सुन्दर पट्टी का अध्ययन किया और यह निष्कर्ष निकाला कि यह श्वेत प्रकाश का स्पेक्ट्म है।
 - किसी ऐसी एक अन्य घटना का उल्लेख कीजिए जहाँ इसी प्रकार के स्पेक्ट्रम का प्रेक्षण किया जाता है।
 - (ii) उपरोक्त प्रकरण में श्वेत प्रकाश का क्या होता है?
 - (iii) (A) किसी इन्द्रधनुष का प्रेक्षण करने के लिए आवश्यक दो शर्तों की सूची बनाइए।

- (iii) (B) इन्द्रधनुष बनने को दर्शाने के लिए किरण आरेख खींचिए। इस आरेख पर नीचे दिए अनुसार (a), (b) और (c) अंकित कीजिए:
 - (a) जहाँ प्रकाश का विक्षेपण (परिक्षेपण) होता है।
 - (b) जहाँ प्रकाश का आन्तरिक परावर्तन होता है।
 - (c) जहाँ प्रकाश का अंतिम अपवर्तन होता है।
- 38. हमारे दैनिक जीवन के लिए साधारण लवण एक अत्यन्त महत्त्वपूर्ण रासायनिक यौगिक है। इसका रासायनिक नाम सोडियम क्लोराइड है तथा इसका उपयोग कच्चे पदार्थ के रूप में कॉस्टिक सोडा, धोने का सोडा, बैकिंग सोडा आदि के निर्माण में किया जाता है। इसका उपयोग अचारों, मक्खन, मांस आदि के परिरक्षण में भी किया जाता है।
 - उस अम्ल और क्षारक का नाम लिखिए जिनसे साधारण लवण प्राप्त किया जा सकता है।
 - (ii) सोडियम क्लोराइड की प्रकृति (अम्लीय/क्षारकीय/उदासीन) का उल्लेख कीजिए। अपने उत्तर की पृष्टि के लिए कारण दीजिए।
 - (iii) (A) क्या होता है जब सोडियम क्लोराइड के जलीय विलयन (ब्राइन) से विद्युत धारा प्रवाहित की जाती है? प्रत्येक उत्पाद का नाम लिखिए तथा यह उल्लेख भी कीजिए कि विद्युत अपघटनी सेल में वह उत्पाद कहां उत्पन्न होता है।

अथवा

(iii) (B) सोडियम क्लोराइड से धोने का सोडा किस प्रकार प्राप्त किया जाता है? इस प्रक्रिया में होने वाली अभिक्रियाओं के रासायनिक समीकरण दीजिए।

31/4/3

1

1

2

2

1

1

2

SECTION - E

Question Nos. 37 to 39 are Source-based/Case-based questions.

- 37. The students in a class took a thick sheet of cardboard and made a small hole in its centre. Sunlight was allowed to fall on this small hole and they obtained a narrow beam of white light. A glass prism was taken and this white light was allowed to fall on one of its faces. The prism was turned slowly until the light that comes out of the opposite face of the prism appeared on the nearby screen. They studied this beautiful band of light and concluded that it is a spectrum of white light.
 - (i) Give any one more instance in which this type of spectrum is observed.
 - (ii) What happens to white light in the above case?
 - (iii) (A) List two conditions necessary to observe a rainbow.

OR

- (iii) (B) Draw a ray diagram to show the formation of a rainbow. Mark on it, points (a), (b) and (c) as given below:
 - (a) Where dispersion of light occurs.
 - (b) Where light gets reflected internally.
 - (c) Where final refraction occurs.
- **38.** Common salt is a very important chemical compound for our daily life. It's chemical name is sodium chloride and it is used as a raw material in the manufacture of caustic soda, washing soda, baking soda etc. It is also used in the preservation of pickles, butter, meat etc.
 - (i) Name the acid and the base from which common salt can be obtained.
 - (ii) State the nature (acidic/basic/neutral) of sodium chloride. Give reason for the justification for your answer.
 - (iii) (A) What happens when electric current is passed through an aqueous solution of sodium chloride (called brine)? Name the products obtained along with the corresponding places in the electrolytic cell where each of these products is obtained.

OR

(iii) (B) How is washing soda obtained from sodium chloride? Give chemical equation of the reactions involved in the process.

31/4/3

[P.T.O.]

1

2

1

1

- 39. जीवन में पर्यावरण में कुछ परिवर्तन, जिन्हें हम 'उद्दीपन' कहते हैं, होते हैं और हम उन पर उचित ढंग से अनुक्रिया करते हैं। अचानक किसी ज्वाला से स्पर्श हमारे लिए एक खतरनाक स्थिति होती है। एक उपाय है कि हम जलने की संभावना के बारे में संज्ञान लें और फिर अपना हाथ ज्वाला से दूर ले जाएं, परन्तु हमारे शरीर की अभिकल्पना इस प्रकार की गयी है कि हम तुरन्त ही स्वयं को इस प्रकार की परिस्थितियों से बचा लेते हैं।
 - (i) उस क्रिया का नाम और उसकी परिभाषा लिखिए जिसके द्वारा हम स्वयं को उपरोक्त स्थिति में बचा लेते हैं।
 - (ii) (a) प्रेरक तंत्रिका और (b) प्रतिसारण तंत्रिका की भूमिका लिखिए।
 - (iii) (A) मानव शरीर में तंत्रिका तंत्रों के दो प्रकार कौन-कौन से हैं? इन दोनों के संघटक लिखिए।

अथवा

- (iii) (B) मानव मस्तिष्क का कौन-सा भाग निम्नलिखित के लिए उत्तरदायी होता है?
 - (a) सोचना
 - (b) पेंसिल पकड़ना
 - (c) रक्तचाप को नियंत्रित करना
 - (d) भूख पर नियंत्रण करना

1

1

2

- **39.** In life there are certain changes in the environment called 'stimuli' to which we respond appropriately. Touching a flame suddenly is a dangerous situation for us. One way is to think consciously about the possibility of burning and then moving the hand. But our body has been designed in such a way that we save ourself from such situations immediately.
 - (i) Name the action by which we protect ourself in the situation mentioned above and define it.

1

(ii) Write the role of (a) motor and (b) relay neuron.

1

(iii) (A) What are the two types of nervous system in human body? Name the components of each of them.

2

OR

(iii) (B) Which part of the human brain is responsible for :

2

- (a) thinking
- (b) picking up a pencil
- (c) controlling blood pressure
- (d) controlling hunger

Marking Scheme Strictly Confidential

(For Internal and Restricted use only) Secondary School Certificate Examination, 2025

SUBJECT: SCIENCE (086) (Q.P. CODE 31/4/1)

General Instructions: -

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in Newspaper/Website, etc. may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- 4 The Marking Scheme carries only suggested value points for the answers.

These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.

- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totalled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks 80 (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	 Ensure that you do not make the following common types of errors committed by the Examiner in the past:- Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

SECONDARY SCHOOL EXAMINATION, 2025 MARKING SCHEME

CLASS: X SCIENCE (Subject Code-086)
[Paper Code: 31/4/1]

Maximum Marks: 80

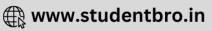
		n Marks: 80				
Q. No.	EXPECTED ANSWERS / VALUE POINTS	Marks	Total Marks			
	SECTION A					
1	(d)/Melting of glaciers	1	1			
2	(a)/Calcium chloride	1	1			
3	(b)/ductility	1	1			
4	(d)/Propyne	1	1			
5	(b)/Nitrogen	1	1			
6	(b)/B and D	1	1			
7	(c)/seeds	1	1			
8	(a)/anther	1	1			
9	(c)/100%; 75%	1	1			
10	(c)/40cm	1	1			
11	(c)/glass slab	1	1			
12	(d)/9	1	1			
13	$(a)/4400 \Omega$	1	1			
14	(c)/60	1	1			
15	(c)/plants -> man	1	1			
16	(c)/DDT	1	1			
17	(d) / Assertion (A) is false but Reason (R) is true.	1	1			
18	(d) / Assertion (A) is false but Reason (R) is true.	1	1			
19	(a) / Both Assertion and Reason are true and Reason (R) is the correct explanation of Assertion (A).	1	1			
20	(d) / Assertion (A) is false but Reason (R) is true.	1	1			

	SECTION B	1	
21	Oxidation is the gain of oxygen by a substance or the loss of hydrogen from	1	
	a substance/ loss of electrons.	1	
	Hydrogen / H ₂	1	2
22			2
	(A)		
	$Mg : + \times \times$	1	
	Cation - magnesium ion / (Mg ²⁺)	1/2	
	Anion - chloride ion / (Cl ⁻)	1/2	
	OR		
	(B)		
	(i) If Zinc is in the form of sulphide ore.		
	Roasting		
	$2ZnS + 3O_2 \xrightarrow{\text{Heat}} 2ZnO + 2SO_2$	1/2	
	- Reduction	1/2	
	$ZnO + C \xrightarrow{Heat} Zn + CO$	1/2	
		1/2	
	OR		
	(ii) If Zinc is in the form of carbonate ore.	1/2	
	Calcination	1/2	
	$ZnCO_3 \xrightarrow{Heat} ZnO + CO_2$		
	- Reduction	1/2	
	$ZnO + C \xrightarrow{Heat} Zn + CO$	1/2	
	(either i or ii)		2
23	Four ways:		
	1. O ₂ as a waste product through stomata.		
	2. Excess water by transpiration.		
	3. Shedding of leaves.		
	4. Stored as resins and gums in old xylem.		
	5. Into the soil		
	6. Stored in cellular vacuoles		
	(Any four)	½x4	2

24			
24	Flowchart Mother's Ova Father's Sperm Gametes X X X Y Zygote X X X X Y Offsprings Female child If a sperm carrying X chromosomes fertilizes an ovum which carries X chromosome, then the child born will be a girl. If a sperm carrying Y chromosome fertilizes an ovum which carries X- Chromosome, then the child born will be a boy.	2	
25	(A) Angle of deviation (one mark for diagram and ½ for labelling.) • Angle of deviation OR (B) I.	1½	2
	Bi-focal lens. Bi-focal lens having upper portion consists of a concave lens and lower portion consists convex lens. distance Concave lens rear Convex lens to facilitate the distant and near vision respectively.	1/2 1	

	OR		
	II.		
	convex lens.	1/2	
	Convex lens is thickened at the middle as compared to edges /		
		1	
	to facilitate the near vision.	1/2	
	(either of I or II)	72	2
26	The lines representing magnetic field around a magnet.	1	
	S N		
	Properties:		
	No two field lines cross each other.		
	Field lines emerge from north pole and merge at south pole.		
	Field lines are closed curves.		
	The direction of the field lines inside the magnet is from its south pole to		
	north pole.	1/2+1/2	
	(any two properties)		2
	SECTION C	T	I
27	(A)		
	The number of atoms of each element remains same before and		
	after a chemical reaction / to satisfy the law of conservation of mass.	1/2	
	 Law of conservation of mass. 	1/2	
	 Mass can neither be created nor destroyed in a chemical 	1	
	reaction.		
	• $3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$	1	
	OR		

	(B)		
	Any reaction in which a precipitate (insoluble substance) is formed is called a precipitation reaction.	1	
	Example: when sodium sulphate solution is added to the barium chloride		
	solution a white precipitate of barium sulphate is formed.	1	
	$Na_2SO_4 (aq) + BaCl_2(aq) \longrightarrow BaSO_4 (s) + 2NaCl(aq)$	1	
	ppt		3
28	(any other example)		
28	Activity:		
	Take an aluminum or copper wire and clamp it on a stand as shown in the diagram.		
	Fix a pin to the free end of the wire using wax.		
	Heat the wire with spirit lamp or burner near the place where it is clamped.		
	We will observe that the pin falls when the wax melts but wire does not melt.	3	
	It indicates that metals are good conductors of heat and have high melting		
	points.		
	Stand ——— Metal wire		
	Clamp — Free end of wire		
	Burner		
	(diagram is not mandatory)		
	(any other activity)		
	(any other activity)		3
29	(i) Salivary amylase - converts Starch to sugar	1/2 +1/2	
	(ii) Bile salts – changing the acidic food alkaline/ emulsifies fats.	1/2 +1/2	
	(iii) Trypsin – Helps in digestion of proteins / Lipase – Breaking down emulsified fats	1/2 +1/2	3
30	Limitations of electrical impulse:		
	• They reach only those cells that are connected by nervous tissue, and		
	not every cell in the animal body.	1	
	Once an electrical impulse is generated in a cell and transmitted, the		
	cell will take some time to reset its mechanism before it can generate		
	and transmit a new impulse. / Takes sometime to reset its		
	mechanism.	1	
	(any other limitation)		


	In chemical communication the signals (chemical compound) potentially reach all cells of the body steadily and persistently providing the desired changes.	1	3
31	Object should be placed between F and P / At less than 18cm distance from the mirror.	1	
	Mirror formula = $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	1/2	
	Magnification $m = +2$ f = -18 cm		
	$m = -\frac{v}{u} = +2$ $\therefore v = -2u$	1	
	<u>_1_+1=1</u>		
	$ \begin{array}{cccc} -2u & u & _{18 cm} \\ \vdots & \frac{1}{2u} & = & \frac{1}{-18 cm} \end{array} $		
	u = -9 cm	1/2	3
32	(i)		
	A - Insulator	1/2	
	B - Alloy	1/2	
	C - Conductor	1/2	
	(ii)		
	A: Plastic - handle of an electric iron.		
	B: Nichrome – used as a heating element in an electric iron.		
	C: Copper - electric wires.		
	A: Rubber– foot of the electric stove.		
	B: Nichrome – used as a heating element in an electric stove.		
	C: Copper- electric wires.		
	(any other example with its use in an electric appliance)	(½X3)	3
33	Decomposers are the microorganisms which breakdown the complex	1	
	organic substances into simple inorganic substances.	1/2+1/2	
	Examples: bacteria and fungi The simple substances formed by decomposition go into the soil and are	/2./2	
	The simple substances formed by decomposition go into the soil and are used up once more by the plants, thus maintain balance of ecosystem	1	3

	SECTION D		
34	(A) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1/2; 1/2	
	Compound B: Ethene; $ \begin{array}{c c} H & H \\ & \\ H - C = C - H \end{array} / C_2H_4 $ $ H H $	1/2; 1/2	
	Compound C: Ethane ; $H - C - C - H / C_2H_6$ $H H H$	1/2; 1/2	
	CH ₃ CH ₂ OH $\xrightarrow{Hot\ Conc}_{H_2}S_{O_4}$ CH ₂ = CH ₂ + H ₂ O 'A' 'B' Conc. H ₂ SO ₄ is a dehydrating agent.	1/2	
	$\begin{array}{ccc} H & H \\ & \\ H - C = C - H + H_2 & \xrightarrow{\text{Ni}} \text{CH}_3 - \text{CH}_3 \\ \text{'B'} & \text{'C'} \end{array}$	1/2	
	$C_2H_6 + 7/2 \ O_2> 2CO_2 + 3H_2O$ 'C' (ignore balancing) OR	1/2	
	(B) $ \begin{array}{c} H & OH \\ & \\ & \\ H - C - C = O / CH_3COOH \\ H \end{array} $ (ii) $ \begin{array}{c} A - E thanoic acid \\ H \end{array} $ acid $ \begin{array}{c} A - E thanoic acid \\ A - E thanoic $	1/2 +1/2	
	(i) A – Ethanoic acid ; H – C – C = O / CH_3COOH	1/2 +1/2	

	'A' 'B'		
	Role of acid – As a catalyst	1/2	
	(iii) By adding dil. NaOH to B (ester) /saponification / by adding water with acid or base/ on addition of NaOH, sodium salt of acid is produced which is further hydrolysed to form 'A'.(iv) By adding solution of alkaline potassium permanganate or acidified potassium dichromate in warm ethanol./	1	
	$CH_3 - CH_2OH \xrightarrow{Alkaline \ KMnO_4 + Heat} CH_3COOH \xrightarrow{(A)}$		
	(v) Carbon dioxide/CO ₂	1	5
55	(A) (i)		
	Regeneration: The ability to give rise to new individual organism from their body parts / If the individual is somehow cut or broken up into	1	
	many pieces, then each piece grows into a new organism.Organism show regeneration: <i>Planaria /Hydra</i>	1/2	
	 Organism show regeneration: Transarta / Tryara Organism does not show regeneration: Spirogyra (any other example) 	1/2	
	 Because it does not have specialised cells which proliferate to make new cell types and tissues. 	1	
	(ii)	1/2	
	Spirogyra.It reproduces through Fragmentation.	1/2	
	 It simply breaks up into smaller pieces upon maturation. The pieces grow into new individuals. 	1	
	OR		
	(B)(i)		
	(a) vas deferens		
	(b) testes		
	(c) prostate gland/ seminal vesicles	1/ 4	
	(d) scrotum	½x4	
	(ii) Consists of genetic material, has a tail for movement, small in size. (any two)	½x2	

	(:::)		
	 (iii) Vas deferens in the males and fallopian tube in females is blocked to 	½x2	
	prevent fertilization.Can cause infections if not performed properly.	1	5
6	(A)		
	(i)		
	Correct Pattern	1	
	Correct direction		
	Correct direction	1	
	(ii) (a)		
	red wire : Live wire		
	black wire : Neutral wire green wire : Earth wire	½x3	
	(b) 220 V	1/2	
	(c) This is used as a safety measure. It ensures that any leakage of the current to the metallic body of the appliance keeps its potential to that of the earth and the user may not get a severe electric shock.	1	
	OR		
	(B)		
	(i) (a) The conductor AB gets displaced.	1	
	(b)		
	- By reversing the direction of the current.		
	- By reversing the direction of the magnetic field.	1+1	

	(iii)Stretch the thumb, fore finger and middle finger of your left hand such that they are mutually perpendicular. If the first finger points in the direction of magnetic field and the second finger in the direction of the current, then the thumb will point in the direction of the force acting on the conductor. SECTION E	1	5
	SECTIONE		
37	 (i) Hydrochloric acid / HCl and Sodium hydroxide / NaOH (ii) Neutral as it is a salt of strong acid and strong base (iii) (A) Aqueous solution of sodium chloride(brine) decomposes (electrolysed) and produces: NaOH solution near cathode Cl₂ at anode H₂ at cathode 	1/2 +1/2 1/2 1/2 1/2 1/2 1/2 x3	
	OR (iii)(B) Washing soda is obtained from sodium chloride by following reactions: NaCl + H ₂ O + CO ₂ + NH ₃ → NH ₄ Cl + NaHCO ₃ 2NaHCO ₃ → Na ₂ CO ₃ + H ₂ O + CO ₂ Recrystallisation of sodium carbonate gives washing soda.	½ x 4	
38	 Na₂CO₃ + 10H₂O → Na₂CO₃ .10H₂O (i) Reflex action. The sudden action in response to stimuli in the environment. (ii) (a) Motor neuron – carries message from spinal cord to the effector organ/muscle (b)Relay neuron – Connects sensory neuron to motor neuron. (iii) Central Nervous system. Components: Brain; spinal cord Peripheral Nervous system. Components: cranial nerves; spinal nerves. 	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 x4	4
	OR		

	(iii)(B)		
	(a) Fore-brain/Cerebrum		
	(b) Cerebellum / Hind-brain		
	(c) Medulla/ Hind-brain		
	(d) Fore-brain	½ x4	
20			4
39	(i) A rainbow (or any other)	1	
	(ii) Dispersion of white light takes place.	1	
	(iii) (A)		
	•The presence of water droplets in the atmosphere.	1+1	
	•The sun must be at the back of the observer.		
	OR		
	(iii) (B)		
	Raindrop		
	Sunlight a a ⇔ b	½ x4	
	(1/ moult fou discusse and 1/ fou labelling a land)		
	(½ mark for diagram and ½ for labelling a, b, c)		4

Marking Scheme Strictly Confidential

(For Internal and Restricted use only)
Secondary School Certificate Examination, 2025
SUBJECT: SCIENCE (086) (Q.P. CODE 31/4/2)

_			
(ien	eral	Instructions: -	
U CI	ıcı aı	III3H UCHOH3	

- You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
- "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in Newspaper/Website, etc. may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
- The Marking Scheme carries only suggested value points for the answers.

 These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totalled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
- No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- A full scale of marks 80 (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.

12 Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper. 13 Ensure that you do not make the following common types of errors committed by the Examiner in the past:-Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. While evaluating the answer books if the answer is found to be totally incorrect, it should 14 be marked as cross (X) and awarded zero (0)Marks. 15 Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously. 16 The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation. 17 Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words. 18 The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

SECONDARY SCHOOL EXAMINATION, 2025 MARKING SCHEME

CLASS: X SCIENCE (Subject Code-086) [Paper Code:31/4/2]

Maximum Marks: 80

	Maxim	um Marks:	8 0			
Q. No.	EXPECTED ANSWERS / VALUE POINTS	Marks	Total Marks			
	SECTION A					
1	(c)/ 40cm	1	1			
2	(c) /100%; 75%	1	1			
3	(c)/ seeds	1	1			
4	(d)/ Melting of glaciers	1	1			
5	(b)/ ductility	1	1			
6	(a)/ Calcium chloride	1	1			
7	(d)/ Propyne	1	1			
8	(d)/ Both, male and female germ cells.	1	1			
9	(b)/ Nitrogen	1	1			
10	(b)/ B and D	1	1			
11	(c)/ DDT	1	1			
12	(c)/ plants -→ man	1	1			
13	(c)/ glass slab	1	1			
14	(d)/9	1	1			
15	(c)/60	1	1			
16	(a)/ 4400 Ω	1	1			
17	(d) / Assertion (A) is false but Reason (R) is true.	1	1			
18	(d) / Assertion (A) is false but Reason (R) is true.	1	1			
19	(d) / Assertion (A) is false but Reason (R) is true.	1	1			
20	(a) // Both Assertion and Reason are true and Reason (R) is the correct explanation of Assertion (A).	1	1			

	SECTION B		
21 Sa	 A pair of tongs should be used to hold the magnesium ribbon. Burn the magnesium ribbon keeping it away from eyes. / protective eye glasses should be worn. 	½ x2	
Ol	bservations: • Dazzling white flame is seen. • A white powder or ash is formed.	½ x2	2
22 (A	Angle of deviation Incident ray (one mark for diagram and ½ for labelling.) • Angle of deviation	1½	
(B I.	OR • Bi-focal lens. • Bi-focal lens having upper portion consists of a concave lens and lower portion consists convex lens. distance Concave lens • to facilitate the distant and near vision respectively.	1/2	
II.		1/2	

		Π	
	Convex lens is thickened at the middle as compared to edges	1	
	• to facilitate the near vision. (either of I or II)	1/2	2
23	The inner lining of the small intestine has numerous finger-like projections called villi, which increases the surface area for absorption of digested food; The villi are richly supplied with blood vessels; which transport the absorbed food to each and every cell of the body.	2	
			2
24	 (i) All tall Tallness is a dominant trait (ii) 1: 1 	1/ ₂ 1/ ₂ 1	
	(award marks if explained through a Mendel's cross)		2
25	(A) $Mg : \begin{array}{c} \times \times \times \times \\ \times \text{Cl} \times \\ \times \times \times \\ \times \times \times \end{array} \longrightarrow (Mg^{2^{+}}) \begin{bmatrix} \times \times \times \\ \times \text{Cl} \times \\ \times \times \times \end{bmatrix}_{2}$ • Cation - magnesium ion / (Mg ²⁺) • Anion - chloride ion / (Cl ⁻)	1 1/2 1/2	
	OR		
	(B)		
	(i) If Zinc is in the form of sulphide ore.Roasting	1/2	
	$2ZnS + 3O_2 \xrightarrow{\text{Heat}} 2ZnO + 2SO_2$	1/2	
	- Reduction $ZnO + C \xrightarrow{\text{Heat}} Zn + CO$	1/2	
	OR		
	(ii) If Zinc is in the form of carbonate ore.		

	Calcination	1/2	
	$ZnCO_3 \xrightarrow{\text{Heat}} ZnO + CO_2$	1/2	
	- Reduction	1/2	
	$ZnO + C \xrightarrow{Heat} Zn + CO$		
	(either i or ii)	1/2	2
26	An electric fuse is a safety device used to prevent any damage to an	1	
20	electrical appliance due to short-circuiting and overloading of the	1	
	electrical circuit.		
	If a fuse wire with defined rating is replaced by one with a larger		
	rating, then the fuse wire will not melt and the electrical appliance		
	will be damaged due to flow of unduly high current during short-	1	2
	circuiting and overloading.		
	SECTION C	_	
27	Decomposers are the microorganisms which breakdown the complex	1	
	organic substances into simple inorganic substances.	1	
	Examples: bacteria and fungi	1/2+1/2	
	The simple substances formed by decomposition go into the soil and are		
	used up once more by the plants, thus maintain balance of an ecosystem.	1	3
28	(i) Metal D		
	(ii) Blue colour of copper sulphate will disappear.		
	(iii) B > C > A > D	1x3	3
29	(i)		
2)	A: pulmonary artery		
	B: pulmonary vein	½ x4	
	C: aorta		
	D: vena cava		
	(ii)		
	• Function of A: Carries deoxygenated blood from heart to lungs.	½ x2	
	• Function of C: Transports oxygenated blood from heart to all parts of	72 AL	
	the body.		3
30	(i)		
	• A - Insulator	1/2	
	B - Alloy	1/2	
	• C - Conductor	1/2	
	(ii)		

	A 701 .: 1 11 6 1 .: :		
	A: Plastic - handle of an electric iron. P. Nich and the distribution of the din		
	• B: Nichrome – used as a heating element in an electric iron.		
	• C: Copper - electric wires.		
	/		
	A: Rubber– foot of the electric stove.		
	B: Nichrome – used as a heating element in an electric stove.		
	C: Copper- electric wires.		
	(any other example with its use in an electric appliance)	(½x3)	
	(any other example with its use in an electric appliance)	(72X3)	3
31	Object should be placed between C and F / between 18cm to 36 cm	1	
	from the mirror.		
	• Mirror formula = $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	1/2	
	• Magnification m = -2		
	f = -18 cm		
	$m = -\frac{v}{u} = -2$	1	
	$\therefore v = 2\mathbf{u}$		
	$V = 2\mathbf{u}$		
	1 1 1		
	$\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$		
	2 1		
	$\therefore \frac{3}{2u} = \frac{1}{-18 \text{cm}}$		
	u = -27 cm	1/2	3
32	(A)		
	The number of atoms of each element remains same before and		
	after a chemical reaction / to satisfy the law of conservation of	1/2	
	mass.		
	 Law of conservation of mass. 	1/2	
	Mass can neither be created nor destroyed in a chemical	1	
	reaction.		
	$\bullet 3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$	1	
	OR		
	UK		

 Any reaction in which a precipitate (insoluble substance) is formed is called a precipitation reaction. Example: when sodium sulphate solution is added to the barium chloride solution a white precipitate of barium sulphate is formed. Na₂SO₄ (aq)+ BaCl₂(aq)	1 1 1 1	3
 They reach only those cells that are connected by nervous tissue, and not every cell in the animal body. Once an electrical impulse is generated in a cell and transmitted, the cell will take some time to reset its mechanism before it can generate and transmit a new impulse. / Takes sometime to reset its mechanism. (any other limitation) In chemical communication the signals (chemical compound) potentially reach all cells of the body steadily and persistently 	1	3
potentially reach all cells of the body steadily and persistently	1	3
SECTION D		
Structural isomers: compounds with identical molecular formula but different structures. $\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
Reason: In propane there are three carbon atoms whose branching is not possible. / Two different skeletal or structures are not possible.	1	
Carbon dioxide, water, heat and light are produced. Chemical equation: 2C ₄ H ₁₀ +13 O ₂ → 8CO ₂ + 10H ₂ O +heat and light.	1/2	
	H H H H H H C C C C C C C H H H H H H H C C C C	Structural isomers: compounds with identical molecular formula but different structures. H H H H H H H H H H H H H H H H H H

	gives blue flame		1/2	
Butyne	gives yellow flame with smoke/soo	oty flame.	1/2	
	OR			
			1	
large amount o	f energy to remove four electrons le	eaving behind a carbon	1	
			ով 1	
Name (a) Ethanol	Structural formula H H H H - C - C - OH H H H H H	Functional group OH / alcohol		
(b) Ethanoic Acid	H О I II H −С −С −ОН I / CH₃СООН	- COOH / O - C - OH / carboxylic acid	½x4	5
(A) (i)				
		Correct Pattern Correct direction	1	
	(B) (i) • Carbon can difficult for the example of	(B) (i) • Carbon can gain four electrons forming C difficult for the nucleus with six protons to hold of the carbon can lose a four electrons forming C large amount of energy to remove four electrons location with six protons. Thus, carbon forms covaled (ii) An atom or a group of atoms/heteroatoms whith properties of an organic compound is called function. Name Structural formula (a) Ethanol H C C C C C C C C C C C C	(B) (i) • Carbon can gain four electrons forming C • Carbon can lose a four electrons forming C • Carbon can lose a four electrons forming C • Carbon can lose a four electrons forming C • Carbon can lose a four electrons leaving behind a carbon cation with six protons. Thus, carbon forms covalent compounds. (ii) An atom or a group of atoms/heteroatoms which determines the chemical properties of an organic compound is called functional group. Name	(B) (i) • Carbon can gain four electrons forming C anion but it would be difficult for the nucleus with six protons to hold on ten electrons. • Carbon can lose a four electrons forming C that it would require a large amount of energy to remove four electrons leaving behind a carbon cation with six protons. Thus, carbon forms covalent compounds. (ii) An atom or a group of atoms/heteroatoms which determines the chemical properties of an organic compound is called functional group. Name

	(ii) (a)		
	(ii) (a) • red wire : Live wire		
	black wire : Neutral wire		
	• green wire : Earth wire	½x3	
	(b) 220 V	1/	
		1/2	
	(c) This is used as a safety measure. It ensures that any leakage of the current to the metallic body of the appliance keeps its potential to that of the earth and the user may not get a severe electric shock.	1	
	OR		
	(B)(i)		
	(a) The conductor AB gets displaced.	1	
	(b)	1	
	- By reversing the direction of the current.		
		1+1	
	- By reversing the direction of the magnetic field.		
	(ii)When the direction of current is at right angles to the direction of the magnetic field.	1	
	(iii)Stretch the thumb, fore finger and middle finger of your left hand such		
	that they are mutually perpendicular. If the first finger points in the direction		
	of magnetic field and the second finger in the direction of the current, then	1	5
	the thumb will point in the direction of the force acting on the conductor.		
36	(A) (i)		
	Regeneration: The ability to give rise to new individual organism		
	from their body parts / If the individual is somehow cut or broken up	1	
	into many pieces, then each piece grows into a new organism.		
	Organism show regeneration: Planaria /Hydra	1/2	
	• Organism does not show regeneration: <i>Spirogyra</i>	1/2	
	(any other example)		
	Because it does not have specialised cells which proliferate to make		
	new cells type and tissues.	1	
	(ii)		
	• Spirogyra.	1/2	
	It reproduces through Fragmentation.	1/2	

	It simply breaks up into smaller pieces upon maturation. The	1	
	pieces grow into new individuals.	1	
	OR		
	(B)(i)		
	(a) vas deferens		
	(b) testes		
	(c) prostate gland/ seminal vesicles		
	(d) scrotum		
	(ii) Consists of genetic material, has a tail for movement, small in size.	½x4	
	(any two)	½x2	
	 Vas deferens in the males and fallopian tube in females is blocked to 		
	prevent fertilization.	½x2	
	 Can cause infections if not performed properly. 		
		1	5
	SECTION E	1	
37	(i) A rainbow (or any other)	1	
	(ii) Dispersion of white light takes place.		
	(iii) (A)		
	The presence of water droplets in the atmosphere.	1+1	
	• The sun must be at the back of the observer.		
	OR		
	(iii) (B)		
	Raindrop		
	Suntight a a	½ x4	
	(½ mark for diagram and ½ for labelling a,b,c)		4
38	(i) Hydrochloric acid/ HCl and Sodium hydroxide / NaOH	1/2 +1/2	
=	(ii) -Neutral	1/2	

	1	T	1
	- as it is a salt of strong acid and strong base.	1/2	
	(iii) (A)		
	 Aqueous solution of sodium chloride (brine) decomposes 	1/	
	(electrolysed) and produces:	1/2	
	NaOH solution near cathode		
	• Cl ₂ at anode		
	H ₂ at cathode	½ x3	
	OR		
	(iii) (B)		
	Washing soda is obtained from sodium chloride by following reactions:		
	• NaCl + H ₂ O + CO ₂ + NH ₃ \longrightarrow NH ₄ Cl + NaHCO ₃		
	• $2\text{NaHCO}_3 \xrightarrow{\text{Heat}} \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2$		
	Recrystallisation of sodium carbonate gives washing soda.		
	• $Na_2CO_3 + 10H_2O \longrightarrow Na_2CO_3 .10H_2O$	½ x 4	4
20	(i) Reflex action.	1/	4
39	 The sudden action in response to stimuli in the environment. 	1/2	
	The student detroit in response to stimum in the environment.	1/2	
	(ii)		
	(a) Motor neuron – carries message from spinal cord to the effector	1/2	
	organ/muscle.		
	(b) Relay neuron – Connects sensory neuron to motor neuron.	1/2	
		/2	
	(iii)		
	(A) -Central Nervous system.		
	Components: Brain; spinal cord ,		
	-Peripheral Nervous system.	½ x4	
	Components: cranial nerves ; spinal nerves.		
	OR		
	(iii)(B)		
	(a) Fore-brain/Cerebrum		
	(b) Cerebellum / Hind-brain		
	(c) Medulla/ Hind-brain	½ x4	
	(d) Fore-brain		4

Marking Scheme Strictly Confidential

(For Internal and Restricted use only) Secondary School Certificate Examination, 2025 SUBJECT: SCIENCE (086) (Q.P. CODE 31/4/3)

Genera	I Instructions: -	-
--------	-------------------	---

<u>Gei</u>	ierai iristructions
1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in Newspaper/Website, etc. may invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
4	The Marking Scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark(√) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (✓) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totalled up and written in the left-hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.

If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".

A full scale of marks 80 (example 0 to 80/70/60/50/40/30 marks as given in Question

No marks to be deducted for the cumulative effect of an error. It should be penalized only

Paper) has to be used. Please do not hesitate to award full marks if the answer deserves

it.

once.

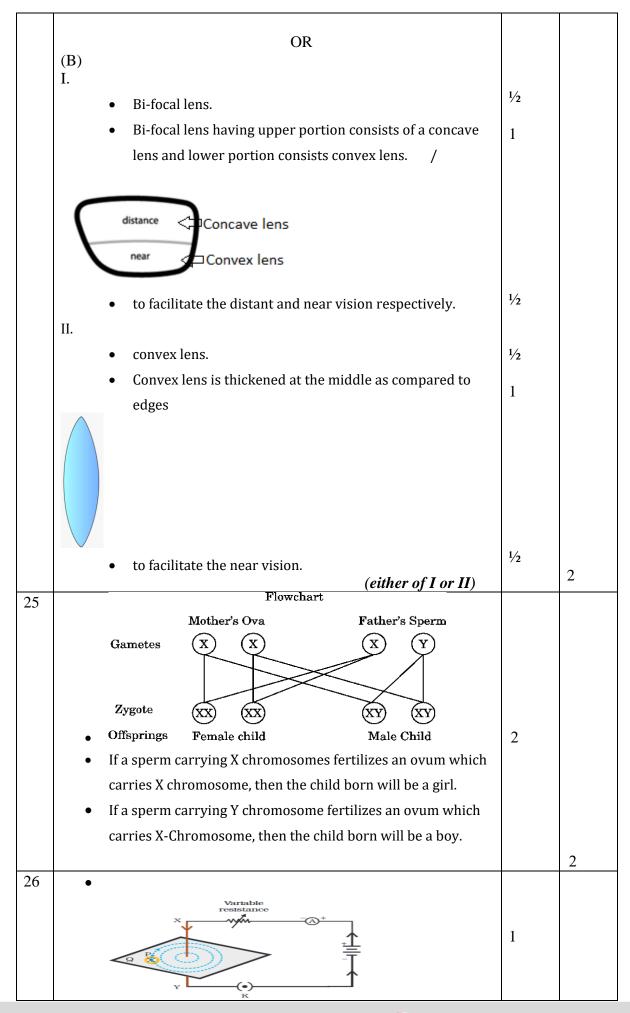
10

11

12 Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper. 13 Ensure that you do not make the following common types of errors committed by the Examiner in the past:-Leaving answer or part thereof unassessed in an answer book. Giving more marks for an answer than assigned to it. Wrong totaling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totaling on the title page. Wrong totaling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded. While evaluating the answer books if the answer is found to be totally incorrect, it should 14 be marked as cross (X) and awarded zero (0)Marks. 15 Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously. 16 The Examiners should acquaint themselves with the guidelines given in the "Guidelines for Spot Evaluation" before starting the actual evaluation. 17 Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words. 18 The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

SECONDARY SCHOOL EXAMINATION, 2025 MARKING SCHEME

CLASS: X SCIENCE (Subject Code-086)
[Paper Code:31/4/3]


Maximum Marks: 80

	1414.	XIIIIuiii IV	larks: 80			
Q. No	EXPECTED ANSWERS / VALUE POINTS	Mark s	Total Mark s			
	SECTION A					
1	(c)/ DDT	1	1			
2	(c)/ plants-→ man	1	1			
3	(b)/ magnesium	1	1			
4	(c)/ glass slab	1	1			
5	(d)/9	1	1			
6	(d)/ Melting of glaciers	1	1			
7	(a)/ Calcium chloride	1	1			
8	(d)/ Propyne	1	1			
9	(b)/ Nitrogen	1	1			
10	(c)/60	1	1			
11	$(a)/4400 \Omega$	1	1			
12	(b)/ B and D	1	1			
13	(c)/ seeds	1	1			
14	(c)/100%; 75%	1	1			
15	(a)/ anther	1	1			
16	(c)/ 40cm	1	1			
17	(a) / / Both Assertion and Reason are true and Reason (R) is the correct explanation of Assertion (A).	1	1			
18	(d) // Assertion (A) is false but Reason (R) is true.	1	1			
19	(d) // Assertion (A) is false but Reason (R) is true.	1	1			
20	(b) / Both Assertion and Reason are true and Reason (R) is not the correct explanation of Assertion (A).	1	1			

	SECTION B		
21	Silver bromide (AgBr) / Silver chloride (AgCl)	1	
	Endothermic Reaction.	1/2	
	Justification: Requires energy/requires sunlight for breaking down the reactant.	1/2	
	the reactant.		2
22	(A)		
	$\bullet \text{Ca} \xrightarrow{\qquad } \text{Ca}^{2+} + 2e^{-}$	1/2	
	$Cl + e^{-} \longrightarrow Cl^{-}$	1/2	
	•		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
	OR		
	 (B) Amphoteric oxide can react with both acids as well as bases to form salt and water. Reactions: 	1	
	$Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$	1/2	
	$Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$ (ignore balancing)	1/2	2
23	Xylem and Phloem	1/2 +1/2	
	Xylem – transports water and minerals obtained from the soil	1/2	
	into the different parts of the plant.	/ 2	
	Phloem – Transports food from leaves to other parts of the	1/	
	plant./ translocation of soluble products.	1/2	2
24	(A) Angle of deviation Emergent ray (one mark for diagram and ½ for labelling.)	11/2	
	Angle of deviation	1/2	
	1 111510 01 00 11011011	/ Z	

	Right hand thumb rule.	1	2
	SECTION C		<u> </u>
27	Object should be placed between F and P / At less than 18cm distance from the mirror. Mirror formula = $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	1 1/2	
	Magnification m = +2 $f = -18 \text{ cm}$ $m = -\frac{v}{u} = +2$ $\therefore v = -2u$	1	
	$\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 \text{ cm}}$ $\therefore \frac{1}{2u} = \frac{1}{-18 \text{ cm}}$ $U = -9 \text{ cm}$	1/2	3
28	• Electrolytic refining • In this process, the impure metal is made the anode and thin strip of pure metal is made the cathode. A solution of metal salt is used as an electrolyte; on passing the current through the electrolyte the pure metal from the anode dissolves into the electrolyte. An equivalent amount of pure metal from the electrolyte is deposited on the cathode. The soluble impurities go into the solution, whereas, the insoluble impurities settle down at the anode and are known as anode mud. / Key / Key / Key / Key / Key / Key / Key / Key /	2	
	Cathode Acidified copper sulphate solution Tank Impurities (award marks if explained diagrammatically)		3

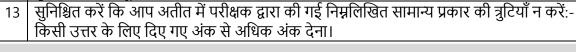
•		ı	
29	• The breakdown of glucose to form <i>pyruvate</i> or <i>pyruvic acid</i> .	1/2	
	• Occurs in <i>cytoplasm</i> of the cell.	1/2	
	(i) In the presence of oxygen: In	1	
	Glucose Pyruvate Lack of oxygen Lack of oxygen Lack cacid + Energy	1	3
30	(A)		
	• The number of atoms of each element remains same		
	before and after a chemical reaction / to satisfy the law	1/2	
	of conservation of mass.		
	 Law of conservation of mass. 	1/2	
	 Mass can neither be created nor destroyed in a chemical reaction. 	1	
	• $3\operatorname{Zn} + 2\operatorname{H}_3\operatorname{PO}_4 \longrightarrow \operatorname{Zn}_3(\operatorname{PO}_4)_2 + 3\operatorname{H}_2$	1	
	OR		
	(B) Any reaction in which a precipitate (insoluble substance) is formed is called a precipitation reaction. Example: when sodium sulphate solution is added to the barium chloride solution a white precipitate of barium sulphate is formed. $Na_2SO_4 \ (aq) + BaCl_2(aq) \longrightarrow BaSO_4 \ (s) + 2NaCl(aq) $ $ppt $ $ (any other example)$	1 1 1	3
31	Decomposers are the microorganisms which breakdown the complex organic substances into simple inorganic substances. Examples: bacteria and fungi The simple substances formed by decomposition go into the soil and are used up once more by the plants, thus maintain balance of an	1 1/2+1/2	
	ecosystem.	1	3
32	 The work done to move a unit charge from one point to other in a conductor. / (V=W/Q) volt (V) 	1 1/2	3

		1	
	In a current carrying conductor, when one joule of work is done to move a charge of 1 coulomb from one point to	1	
	 another. 1 volt = 1 joule/1 coulomb or 1V=1 J C⁻¹ 	1/2	3
33	Limitations of electrical impulse:		
	They reach only those cells that are connected by nervous		
	tissue, and not every cell in the animal body.	1	
	Once an electrical impulse is generated in a cell and		
	transmitted, the cell will take some time to reset its		
	mechanism before it can generate and transmit a new	1	
	impulse. / Takes sometime to reset its mechanism.		
	(any other limitation)		
	(and, context annual context,		
	In chemical communication the signals (chemical		
	compound) potentially reach all cells of the body steadily	1	
	and persistently providing the desired changes.		3
34	SECTION D		
34	(A) (i)		
	Correct Pattern	1	
	Correct direction	1	
	(ii) (a)		
	red wire : Live wire	½x3	
	black wire : Neutral wire		
	green wire : Earth wire		
	(b) 220 V	1/2	
	(c) This is used as a safety measure. It ensures that any leakage of the current to the metallic body of the appliance keeps its potential to that of the earth and the user may not get a severe electric shock.	1	
	OR		
	(B)		
	(i) (a) The conductor AB gets displaced.	1	
<u> </u>	1 () ()		L

	·	1	1
	(b)		
	By reversing the direction of the current		
	By reversing the direction of the magnetic field	1+1	
	By levelsing the unconstitute magnetic field		
	(ii)When the direction of current is at right angles to the direction		
	of the magnetic field.	1	
	(iii)Stretch the thumb, fore finger and middle finger of your left hand such that they are mutually perpendicular. If the first finger points in the direction of magnetic field and the second finger in the direction of the current, then the thumb will point in the direction of the force acting on the conductor.	1	5
35	(A)		
	A – Stigma ; B – Anther	$\frac{1}{2} + \frac{1}{2}$	
	• pollen germinate to form pollen tube which carries male germ cells	/2 1 /2	
	to the egg cell in the ovule of the ovary.		
	Fusion of germ cells/fertilization gives rise to zygote.		
	• Zygote divides to form an embryo within the ovule. Ovule develops		
	and converted into a seed.	1x4	
	Ovary grows rapidly to form a fruit. Petals, sepals, stamens, style,		
	etc. shrivel and fall off.		
	OR		
	(B)		
	Changes after fertilization:		
	Fertilisation results in the formation of a zygote.		
	• Zygote starts dividing to form an embryo, which is implanted in the		
	lining of the uterus.		
	Embryo continues to grow and derive nutrition through placenta.	1x3	
	Role of placenta –		
	To provide oxygen and glucose to the embryo from mother's blood	1	
	To remove waste substances generated by the developing embryo.		
	If the egg is not fertilized: • the lining of the uterus slowly breaks and comes out through the vagina as blood and mucous./ menstruation will occur.	1	5

36	(A) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1/2; 1/2	
	$\begin{array}{ccc} & H & H \\ & & \\ H - C = C - H \\ & / C_2H_4 \end{array}$ Compound B: Ethene;	1/2; 1/2	
	Compound C: Ethane ; $\begin{array}{c c} H & H \\ & \\ & \\ H - C - C - H \ / \ C_2 H_6 \\ & \\ H & H \end{array}$	1/2; 1/2	
	CH ₃ CH ₂ OH $\xrightarrow{Hot\ Conc\ _{H_2}S_{O_4}}$ CH ₂ = CH ₂ + H ₂ O 'A' 'B' Conc. H ₂ SO ₄ is a dehydrating agent.	1/2	
	$\begin{array}{ccc} H & H \\ & & \\ H - C = C - H + H_2 & \xrightarrow{\text{Ni}} CH_3 - CH_3 \\ \text{'B'} & \text{'C'} \end{array}$	1/2	
	$C_2H_6 + 7/2 O_2 \longrightarrow 2CO_2 + 3H_2O$ 'C'	1/2	
	(ignore balancing)		
	OR (B) $\begin{array}{ccc} & H & OH \\ & & \\ & & \\ \text{(i) A - Ethanoic acid} \end{array} ; \begin{array}{c} H - C - C & = O \\ / CH_3COOH \\ & \\ & H \end{array}$	1/2 +1/2	
	(ii) $CH_{3}COOH + C_{2}H_{5}OH \xrightarrow{acid} CH_{3}COOC_{2}H_{5}$ 'A' 'B'	1/2	
	Role of acid – As a catalyst	1/2	

	(iii) By adding dil. NaOH to B (ester) /saponification / by adding water with acid or base/ on addition of NaOH, sodium salt of acid is produced which is further hydrolysed to form 'A'	1	
	(iv) By adding solution of alkaline potassium permanganate or acidified potassium dichromate in warm ethanol./	1	
	$CH_3 - CH_2OH \xrightarrow{Alkaline \ KMnO_4 + Heat} CH_3COOH \xrightarrow{Or \ acidified \ K_2Cr_2O_7 + Heat} CH_3COOH$		
	(v) Carbon dioxide/ CO ₂	1	5
	SECTION E	L	1 -
37	(i) A rainbow (or any other) (ii) Dispersion of white light takes place.	1	
	 (iii) (A) The presence of water droplets in the atmosphere. The sun must be at the back of the observer. 	1+1	
	OR		
	(iii) (B)		
	Suntight Raindrop Suntight	½ x4	
	(½ mark for diagram and ½ for labelling a, b, c)		4
38	(i) Hydrochloric acid/ HCl and Sodium hydroxide / NaOH	1/2 +1/2	
	(ii)		
	-Neutral	1/2	
	- as it is a salt of strong acid and strong base. (iii) (A)	1/2	
	 Aqueous solution of sodium chloride(brine) decomposes (electrolysed) and produces: NaOH solution near cathode 	1/2	



		• Cl ₂ at anode	½ x3	
		H ₂ at cathode		
		OR		
	(iii)(B)			
	Washing so	da is obtained from sodium chloride by following		
	reactions:			
	NaCl + H ₂ O -	$+ CO_2 + NH_3 \longrightarrow NH_4Cl + NaHCO_3$		
	2NaHCO ₃ —	$\xrightarrow{\text{Heat}} \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2$		
	Recrystallis	ation of sodium carbonate gives washing soda.	½ x 4	4
	Na ₂ CO ₃ + 10	$0H_2O \longrightarrow Na_2CO_3.10H_2O$	72 X 4	4
39	(i) Reflex ac	ction.	1/2	
	The sudden	action in response to stimuli in the environment.	1/2	
	(ii)		/2	
	(a) Motor no	euron – carries message from spinal cord to the effector		
	organ/muso	cle	1/2	
	(b)Relay n	euron – Connects sensory neuron to motor neuron.		
	(iii)		1/2	
	Central Nerv	vous system.		
	Compone	ents: Brain; spinal cord	17.4	
	Peripheral N	Nervous system.	½ x4	
	Compone	ents: cranial nerves ; spinal nerves.		
		OR		
	(iii)(B)			
	(a)	Fore-brain/Cerebrum		
	(b)	Cerebellum / Hind-brain		
	(c)	Medulla/ Hind-brain	½ x4	
	(d)	Fore-brain	/2 14	
				4

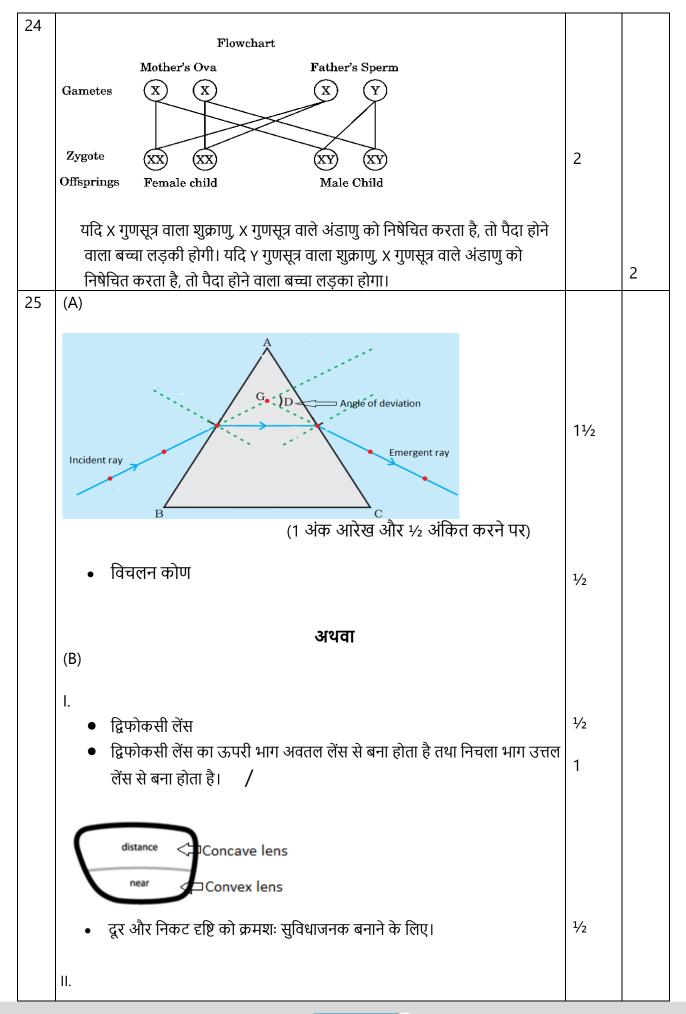
अंकन योजना पूरी तरह से गोपनीय माध्यमिक विद्यालय परीक्षा, 2025

(केवल आंतरिक और प्रतिबंधित उपयोग के लिए) विषय का नाम: विज्ञान विषय कोड: 086 पेपर कोड: 31/4/1 सामान्य निर्देश: -आप जानते हैं कि अभ्यर्थियों के वास्तविक एवं सही मूल्यांकन में मूल्यांकन सबसे महत्वपूर्ण प्रक्रिया है। मूल्यांकन में एक छोटी सी गलती गंभीर समस्याओं का कारण बन सकती है जो उम्मीदवारों के भविष्य, शिक्षा प्रणाली और शिक्षण पेशे को प्रभावित कर सकती है। गलतियों से बचने के लिए आपसे अनुरोध है कि मूल्यांकन शुरू करने से पहले स्पॉट मूल्यांकन दिशानिर्देशों को ध्यान से पढ़ें और समझें। "मुल्यांकन नीति एक गोपनीय नीति है क्योंकि यह आयोजित परीक्षाओं, किए गए मुल्यांकन और कई 2 अन्य पहलुओं की गोपनीयता से संबंधित है। इसके किसी भी तरह से जनता के बीच लीक होने से परीक्षा प्रणाली पटरी से उतर सकती है और लाखों उम्मीदवारों के जीवन और भविष्य पर असर पड सकता है। इस नीति/दस्तावेज़ को किसी के साथ साझा करना, किसी पत्रिका में प्रकाशित करना और समाचार पत्र/वेबसाइट आदि में छापना बोर्ड और आईपीसी के विभिन्न नियमों के तहत कार्रवाई को आमंत्रित कर सकता है। मूल्यांकन अंकन योजना में दिए गए निर्देशों के अनुसार किया जाना है। इसे अपनी व्याख्या या किसी अन्य विचार के अनुसार नहीं किया जाना चाहिए। अंकन योजना का कड़ाई से पालन किया जाना चाहिए। हालाँकि, मूल्यांकन करते समय, जो उत्तर नवीनतम जानकारी या ज्ञान पर आधारित हैं और/या नवीन हैं, अन्यथा उनकी सत्यता का मूल्यांकन किया जा सकता है और उन्हें उचित अंक दिए जा सकते हैं। कक्षा-X में, दो योग्यता-आधारित प्रश्नों का मूल्यांकन करते समय, कृपया दिए गए उत्तर को समझने का प्रयास करें और भले ही उत्तर अंकन योजना से न हो, लेकिन उम्मीदवार द्वारा सही योग्यता गिनाई गई हो, उचित अंक दिए जाने चाहिए। अंकन योजना में उत्तरों के लिए केवल सुझाए गए मूल्य बिंदु हैं। ये केवल दिशानिर्देशों की प्रकृति में हैं और संपूर्ण उत्तर का गठन नहीं करते हैं। विद्यार्थियों की अपनी अभिव्यक्ति हो सकती है और यदि अभिव्यक्ति सही है तो उसके अनुसार उचित अंक दिये जाने चाहिए। प्रधान-परीक्षक को पहले दिन प्रत्येक मूल्यांकनकर्ता द्वारा मूल्यांकन की गई पहली पांच उत्तर पुस्तिकाओं का अध्ययन करना होगा, ताकि यह सुनिश्चित हो सके कि मुल्यांकन अंकन योजना में दिए गए निर्देशों के अनुसार किया गया है। यदि कोई भिन्नता हो तो विचार-विमर्श के बाद उसे शून्य किया जाए। मूल्यांकन के लिए शेष उत्तर पुस्तिकाएं यह सुनिश्चित करने के बाद ही दी जाएंगी कि व्यक्तिगत मूल्यांकनकर्ताओं के अंकन में कोई महत्वपूर्ण भिन्नता नहीं है। जहां भी उत्तर सही होगा, मूल्यांकनकर्ता (√) अंकित करेंगे। गलत उत्तर के लिए क्रॉस 'X' अंकित किया जाए। मूल्यांकनकर्ता मूल्यांकन करते समय सही (🗸) नहीं लगाएंगे जिससे यह आभास होगा कि उत्तर सही है और कोई अंक नहीं दिया गया है। यह सबसे आम गलती है जो मूल्यांकनकर्ता कर रहे हैं। यदि किसी प्रश्न के कुछ भाग हैं, तो कृपया प्रत्येक भाग के लिए दाहिनी ओर अंक दें। फिर प्रश्न के विभिन्न भागों के लिए दिए गए अंकों को जोड़ दिया जाना चाहिए और बाएं हाथ के हाशिये में लिखा जाना चाहिए और घेरा बनाया जाना चाहिए। इसका सख्ती से पालन किया जा सके. यदि किसी प्रश्न में कोई भाग नहीं है, तो बाएं हाथ के हाशिए में अंक दिए जाने चाहिए और घेरा लगाना 8 चाहिए। इसका भी सख्ती से पालन किया जा सकता है. यदि किसी छात्र ने एक अतिरिक्त प्रश्न का प्रयास किया है, तो अधिक अंकों के योग्य प्रश्न का उत्तर बरकरार रखा जाना चाहिए और दूसरे उत्तर को "अतिरिक्त प्रश्न" नोट के साथ काट दिया जाना चाहिए। किसी त्रुटि के संचयी प्रभाव के लिए कोई अंक नहीं काटा जाएगा। इसे केवल एक बार दंडित किया 10 जाना चाहिए। बिंदु का एक पूर्ण स्कैन _80 (उदाहरण 0 से 80/70/60/50/40/30 अंक जैसा कि प्रश्न पत्र में दिया गया 11 है) का उपयोग करना होगा। यदि यह उपयुक्त है तो कृपया आर्डिनरी में प्रवेश न लें। प्रत्येक परीक्षक को आवश्यक रूप से पूरे कार्य समय अर्थात प्रतिदिन 8 घंटे तक मुल्यांकन कार्य करना होगा तथा मुख्य विषयों में प्रतिदिन 20 उत्तर पुस्तिकाओं तथा अन्य विषयों में प्रतिदिन 25 उत्तर पुस्तिकाओं का मूल्यांकन करना होगा (विवरण स्पॉट गाइडलाइन्स में दिया गया है)।

- किसी उत्तर पर दिए गए अंकों का गलत योग।
- उत्तर पुस्तिका के अंदर के पन्नों से मुख्य पृष्ठ पर अंकों का गलत स्थानांतरण। शीर्षक पृष्ठ पर गलत प्रश्नवार योग।
- उत्तर पुस्तिका में उत्तर या उसके किसी भाग को बिना मूल्यांकन किये छोड़ देना।
- शीर्षक पृष्ठ पर दो कॉलमों के अंकों का गलत योग।
- गलत योग।
- शब्दों और अंकों में अंकित चिह्न मेल नहीं खाते/समान नहीं।
- उत्तर पुस्तिका से ऑनलाइन पुरस्कार सूची में अंकों का गलत स्थानांतरण।
- उत्तरों को सही के रूप में चिह्नित किया गया, लेकिन अंक नहीं दिए गए। (सुनिश्चित करें कि सही टिक मार्क सही और स्पष्ट रूप से इंगित किया गया है। यह केवल एक पंक्ति होनी चाहिए। गलत उत्तर के लिए एक्स के साथ भी ऐसा ही है।)
- उत्तर के आधे या कुछ भाग को सही और शेष को गलत चिह्नित किया गया, लेकिन कोई अंक नहीं दिया गया।
- उत्तर पुस्तिकाओं का मूल्यांकन करते समय यदि उत्तर पूरी तरह से गलत पाया जाता है, तो इसे क्रॉस
 (X) के रूप में चिह्नित किया जाना चाहिए और शून्य (0) अंक दिए जाने चाहिए।
- 15 किसी भी मूल्यांकन न किए गए भाग, शीर्षक पृष्ठ पर अंक न ले जाना, या उम्मीदवार द्वारा पाई गई कुल त्रुटि से मूल्यांकन कार्य में लगे सभी कर्मियों और बोर्ड की प्रतिष्ठा को नुकसान होगा। इसलिए, सभी संबंधित पक्षों की प्रतिष्ठा बनाए रखने के लिए, यह फिर से दोहराया जाता है कि निर्देशों का सावधानीपूर्वक और विवेकपूर्ण तरीके से पालन किया जाए।
- 16 परीक्षकों को वास्तविक मूल्यांकन शुरू करने से पहले "स्पॉट मूल्यांकन के लिए दिशानिर्देश" में दिए गए दिशानिर्देशों से परिचित होना चाहिए।
- 17 प्रत्येक परीक्षक यह भी सुनिश्चित करेगा कि सभी उत्तरों का मूल्यांकन किया गया है, अंकों को शीर्षक पृष्ठ पर ले जाया गया है, सही ढंग से योग किया गया है और अंकों और शब्दों में लिखा गया है।
- 18 उम्मीदवार निर्धारित प्रसंस्करण शुल्क का भुगतान करके अनुरोध पर उत्तर पुस्तिका की फोटोकॉपी प्राप्त करने के हकदार हैं। सभी परीक्षकों/अतिरिक्त प्रधान परीक्षकों/प्रधान परीक्षकों को एक बार फिर याद दिलाया जाता है कि उन्हें यह सुनिश्चित करना होगा कि मूल्यांकन अंकन योजना में दिए गए प्रत्येक उत्तर के लिए मूल्य बिंदुओं के अनुसार सख्ती से किया जाए।

माध्यमिक विद्यालय परीक्षा, 2025 अंकन योजना

कक्षा: x विज्ञान (विषय कोड-086) [प्रश्न पत्र कोड: 31/4/1]


अधिकतम अंक: 80

	आधकतम	जप ः ०।	<u>, </u>			
प्र. सं	अपेक्षित उत्तर / मूल्य बिंदु	अंक	कुल अंक			
	खण्ड - क					
1	(d)/ग्लेशियर(हिमनदी) का पिघलना	1	1			
2	(a)/ कैल्शियम क्लोराइड	1	1			
3	(b)/ आघातवर्ध्यता	1	1			
4	(d)/ प्रोपाइन	1	1			
5	(b)/ नाइट्रोजन	1	1			
6	(b)/ B और D	1	1			
7	(c)/बीज	1	1			
8	(a)/ परागकोश	1	1			
9	(c)/100%; 75%	1	1			
10	(c)/40cm	1	1			
11	(c)/ कांच का स्लैब	1	1			
12	(d)/9	1	1			
13	(a)/4400 Ω	1	1			
14	(c)/60	1	1			
15	(c)/पौधे> मनुष्य	1	1			
16	(c)/DDT	1	1			
17	(d) /अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।	1	1			
18	(d) /अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।	1	1			
19	(a) / अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है ।	1	1			
20	(d)/ अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।	1	1			

	खण्ड – ख		
21	 किसी पदार्थ में ऑक्सीजन की वृधि या हाइड्रोजन का ह्वास होना ऑक्सीकरण (उपचयन) होता है / इलेक्ट्रानों का ह्वास हाइड्रोजन / H₂ 	1	2
22	(A) $Mg : \begin{array}{c} & \times $	1	
	 ऋणायन - क्लोराइड आयन / (Cl⁻) धनायन - मैग्नीशियम आयन / (Mg²⁺) 	1/ ₂ 1/ ₂	
	अथवा		
	(B) (i) यदि जिंक, सल्फाइड अयस्क के रूप में हो तब: • भर्जन 2ZnS + 3O ₂	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂	
	 (ii) यदि जिंक, कार्बोनेट अयस्क के रूप में हो तब: • निस्तापन ZnCO₃	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂	2
23	चार युक्तिया: 1. अपशिष्ट पदार्थों के रूप में O₂ का रंध्रों के माध्यम से 2. अतिरिक्त जल को वाष्पोत्सर्जन द्वारा । 3. पत्तियों को गिरा कर 4. पुराने जाइलम में रेजिन और गोंद के रूप में संग्रहित कर । 5. आस-पास की मृदा में 6.कोशिकीय रिक्तिका में संचित कर (कोई चार)	½x4	2

उत्तल लेंस. निकट शियाजक किया. उत्ति लेंस. उत्तल लेंस. तलेंस. उत्ति से से से से कोई एक) उत्ति है। उत्तिलेंस. उत्तिलेंस.केंस. उत्तिलेंस.केंस. उत्तिलेंस.केंस. उत्तिलेंस.केंस.केंस.केंस. उत्तिलेंस.केंस.केंस.केंस. उत्तिलेंस.केंस.केंस.केंस. उत्तिलेंस.कें				
• निकट दृष्टि को सुविधाजनक बनाने के लिए। (i और ii में से कोई एक) 2 • किसी चुम्बक के चारों ओर चुम्बकीय क्षेत्र को द्रशनि वाली रेखाएँ / • कोई भी दो क्षेत्र रेखाएँ कहीं भी एक दूसरे को प्रतिछेद नहीं करतीं । • क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं और दक्षिणी ध्रुव पर विलीन होती हैं। • खेत्र रेखाएँ बंद वक्र होती हैं। • चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दक्षिणी ध्रुव से उत्तरी ध्रुव की ओर होती है। • कोई दो गुण) 2 27 (A) • किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • उटा २ २ २ ३ ३ ३ ३ ३ ३ ३ ३ ३ ३ ३ ३ ३ ३ ३ ३		• उत्तल लेंस किनारों की अपेक्षा बीच से मोटा होता है /	1	
• निकट दृष्टि को सुविधाजनक बनाने के लिए। (i और ii में से कोई एक) 2 26 • किसी चुम्बक के चारों और चुम्बकीय क्षेत्र को दर्शाने वाली रेखाएँ / • कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछेद नहीं करतीं । • क्षेत्र रेखाएँ उत्तरी धूव से प्रकट होती हैं और दक्षिणी धूव पर विलीन होती हैं। • क्षेत्र रेखाएँ बंद वक्र होती हैं। • चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दक्षिणी धूव से उत्तरी धूव की ओर होती है। 2 27 (A) • किसी रासायनिक अभिक्रिया के पहले एवं उसके प्रध्यात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 32n + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ 840 841 842 843 844 845 845 846 847 848 848 848 849 840 841 841 842 843 844 844 844 845 845 845 845			l I	1
(i और ii में से कोई एक) • किसी चुम्बक के चारों ओर चुम्बकीय क्षेत्र को दर्शाने वाली रेखाएँ / गुण: • कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछेद नहीं करतीं । • क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं और दक्षिणी ध्रुव पर विलीन होती हैं। • क्षेत्र रेखाएँ बंद वक्र होती हैं। • चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दक्षिणी ध्रुव से उत्तरी ध्रुव की ओर होती है। ** ** ** ** ** ** ** ** **				
(i और ii में से कोई एक) 2 26 • किसी चुम्बक के चारों ओर चुम्बकीय क्षेत्र को दर्शाने वाली रेखाएँ / 1 • कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछेद नहीं करतीं । • क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं और दक्षिणी ध्रुव पर विलीन होती हैं। • क्षेत्र रेखाएँ बंद वक्र होती हैं। • चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दक्षिणी ध्रुव से उत्तरी ध्रुव की ओर होती है। 2 **BUS - ग 27 (A) • किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 3Zn + 2H ₃ PO ₄ → Zn ₃ (PO ₄) ₂ + 3H ₂ 340 14				
(i और ii में से कोई एक) 2 26 • किसी चुम्बक के चारों ओर चुम्बकीय क्षेत्र को दर्शाने वाली रेखाएँ / 1 • कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछेद नहीं करतीं । • क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं और दक्षिणी ध्रुव पर विलीन होती हैं। • क्षेत्र रेखाएँ बंद वक्र होती हैं। • चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दक्षिणी ध्रुव से उत्तरी ध्रुव की ओर होती है। 2 **BUS - ग 27 (A) • किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 3Zn + 2H ₃ PO ₄ → Zn ₃ (PO ₄) ₂ + 3H ₂ 340 14				
(i और ii में से कोई एक) 2 26 • किसी चुम्बक के चारों ओर चुम्बकीय क्षेत्र को दर्शाने वाली रेखाएँ / 1 • कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछेद नहीं करतीं । • क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं और दक्षिणी ध्रुव पर विलीन होती हैं। • क्षेत्र रेखाएँ बंद वक्र होती हैं। • चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दक्षिणी ध्रुव से उत्तरी ध्रुव की ओर होती है। 2 **BUS - ग 27 (A) • किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 3Zn + 2H ₃ PO ₄ → Zn ₃ (PO ₄) ₂ + 3H ₂ 340 14				
(i और ii में से कोई एक) 2 26 • किसी चुम्बक के चारों ओर चुम्बकीय क्षेत्र को दर्शाने वाली रेखाएँ / गुण: • कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछेद नहीं करतीं । • क्षेत्र रेखाएँ उत्तरी धूव से प्रकट होती हैं और दक्षिणी ध्रुव पर विलीन होती हैं। • क्षेत्र रेखाएँ बंद वक्र होती हैं। • चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दक्षिणी ध्रुव से उत्तरी ध्रुव की ओर होती है। 2 27 (A) • किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 3Zn + 2H ₃ PO ₄ → Zn ₃ (PO ₄) ₂ + 3H ₂ 342				
(i और ii में से कोई एक) 2 26 • किसी चुम्बक के चारों ओर चुम्बकीय क्षेत्र को दर्शाने वाली रेखाएँ / 1 • कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछेद नहीं करतीं । • क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं और दक्षिणी ध्रुव पर विलीन होती हैं। • क्षेत्र रेखाएँ बंद वक्र होती हैं। • चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दक्षिणी ध्रुव से उत्तरी ध्रुव की ओर होती है। 2 **BUS - ग 27 (A) • किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 3Zn + 2H ₃ PO ₄ → Zn ₃ (PO ₄) ₂ + 3H ₂ 340 14		्र निकट दर्षि को सविधाननक बनाने के लिए।	1/2	
26 • किसी चुम्बक के चारों ओर चुम्बकीय क्षेत्र को दर्शाने वाली रेखाएँ / गुण: • कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछेद नहीं करतीं । • क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं और दक्षिणी ध्रुव पर विलीन होती हैं। • खेत्र रेखाएँ बंद वक्र होती हैं। • चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दक्षिणी ध्रुव से उत्तरी ध्रुव की ओर होती है। 20 27 (A) • किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 3Zn + 2H₃PO₄ → Zn₃⟨PO₄⟩₂ + 3H₂ 342 343 344 344 345 346 347 348 348 349 340 340 341 341 341 341 342 343 344 344		_	/2	2
गुण: • कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछेद नहीं करतीं । • क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं और दक्षिणी ध्रुव पर विलीन होती हैं। • क्षेत्र रेखाएँ बंद वक्र होती हैं। • खुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दक्षिणी ध्रुव से उत्तरी ध्रुव की ओर होती है। • किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • ЗZп + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ (B)	26			
 कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछंद नहीं करतीं । क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं और दिक्षणी ध्रुव पर विलीन होती हैं। क्षेत्र रेखाएँ बंद वक्र होती हैं। चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दिक्षणी ध्रुव से उत्तरी ध्रुव की ओर होती है। खण्ड - ग खण्ड - ग किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए द्रव्यमान संरक्षण का नियम किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ अथवा 		विगता युन्वक के वारा जार युन्वकाव क्षेत्र का देशान वाता रखाद्र	1	
कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछेद नहीं करतीं । % क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं और दिक्षणी ध्रुव पर विलीन होती हैं। % क्षेत्र रेखाएँ बंद वक्र होती हैं।				
कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछेद नहीं करतीं । % क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं और दिक्षणी ध्रुव पर विलीन होती हैं। % क्षेत्र रेखाएँ बंद वक्र होती हैं।				
 कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछंद नहीं करतीं । क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं। क्षेत्र रेखाएँ बंद वक्र होती हैं। चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दिक्षणी ध्रुव से उत्तरी ध्रुव की ओर होती है। खण्ड - ग किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए द्रव्यमान संरक्षण का नियम किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ अथवा 		S N		
 कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछंद नहीं करतीं । क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं। क्षेत्र रेखाएँ बंद वक्र होती हैं। चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दिक्षणी ध्रुव से उत्तरी ध्रुव की ओर होती है। खण्ड - ग किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए द्रव्यमान संरक्षण का नियम किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ अथवा 				
 कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछंद नहीं करतीं । क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं। क्षेत्र रेखाएँ बंद वक्र होती हैं। चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दिक्षणी ध्रुव से उत्तरी ध्रुव की ओर होती है। खण्ड - ग किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए द्रव्यमान संरक्षण का नियम किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ अथवा 				
 कोई भी दो क्षेत्र रेखाएं कहीं भी एक दूसरे को प्रतिछंद नहीं करतीं । क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं। क्षेत्र रेखाएँ बंद वक्र होती हैं। चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दिक्षणी ध्रुव से उत्तरी ध्रुव की ओर होती है। खण्ड - ग किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए द्रव्यमान संरक्षण का नियम किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ अथवा 		THE		
 क्षेत्र रेखाएँ उत्तरी ध्रुव से प्रकट होती हैं और दक्षिणी ध्रुव पर विलीन होती हैं। क्षेत्र रेखाएँ बंद वक्र होती हैं। चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दिक्षणी ध्रुव से उत्तरी ध्रुव की ओर होती है। (कोई दो गुण) 2 खण्ड - ग किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए द्रव्यमान संरक्षण का नियम किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है 1/2 और न ही विनाश । 3Zn + 2H₃PO₄				
		••		
 चुम्बक के अंदर क्षेत्र रेखाओं की दिशा उसके दक्षिणी ध्रुव से उत्तरी ध्रुव की ओर होती है। (कोई दो गुण)			$\frac{1}{2} + \frac{1}{2}$	
होती है। (कोई दो गुण) 2 खण्ड - ग 27 (A) • किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 3Zn + 2H ₃ PO ₄ \top Zn ₃ (PO ₄) ₂ + 3H ₂ 1 अथवा (B)			J	
(कोई दो गुण) 2 खण्ड - ग 27 (A) • किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए ½ • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है ½ और न ही विनाश । 1 • 3Zn + 2H₃PO₄ ✓ Zn₃(PO₄)₂ + 3H₂ 1 (B) अथवा				
खण्ड - ग 27 (A) • किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ 1 340 340 (B)				2
 किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए द्रव्यमान संरक्षण का नियम किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । 3Zn + 2H₃PO₄				
 किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए द्रव्यमान संरक्षण का नियम किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । 3Zn + 2H₃PO₄	27			
की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ 1 3थवा (B)			णुओं	
 किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ अथवा (B) 			•	
और न ही विनाश । • 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ 3थवा (B)		• द्रव्यमान संरक्षण का नियम		
• 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ 1 (B)		• किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता	है 1/2	
) अथवा (B)		और न ही विनाश ।	1	
अथवा (B)		$\bullet 3Zn + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$		
(B)			1	
		अथवा		
		(B)		
• कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिक्रिया		• कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिन्नि	क्रेया	
कहलाती है।		कहलाती है।	1	
• उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया		• उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिल	गाया	
		जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है।		

	• Na ₂ SO ₄ (aq) + BaCl ₂ (aq) \longrightarrow BaSO ₄ (s) + 2NaCl(aq) ppt	1	
	(कोई अन्य उदाहरण)	1	
			3
28	कार्यकलापः • एक एल्युमीनियम या तांबे का तार लीजिए और उसे चित्र में दर्शाए अनुसार एक स्टैंड पर क्लैंप से बाँध दीजिए। • तार के एक सिरे पर मोम का उपयोग कर एक पिन चिपका दीजिए। • स्पिरिट लैम्प या बर्नर से क्लैंप के निकट तार को गर्म करें। • थोड़ी देर बाद हम देखेंगे कि मोम पिघलने पर पिन गिर जाती है लेकिन तार नहीं पिघलता है। • यह दर्शाता है कि धातुएं ऊष्मा की अच्छी चालक (सुचालक) होती हैं तथा उनका गलनांक उच्च होता है।	3	
	(चित्र आवश्यक नहीं है) (कोई अन्य कार्यकलाप)		2
29			3
23	(i) लार एमिलेस : स्टार्च (मंड) को शर्करा में परिवर्तित करता है ।	1/2 +1/2	
	(ii) पित्त लवण : अम्लीय भोजन को क्षारीय बनाना / वसा का इम्लसीकरण करता है।	1/2 +1/2	
	(iii) ट्रिप्सिन : प्रोटीन के पाचन में मदद करता है /	1/, 1/	
	लाइपेस: इम्लसीकृत वसा का पाचन	1/2 + 1/2	2
30	विन्यान आनेम की मीमाएँ.		3
	विद्युत आवेग की सीमाएँ:		
	 वे केवल उन कोशिकाओं तक पहुंचते हैं जो तंत्रिका ऊतक से जुड़ी होती हैं, जंतु शरीर की प्रत्येक कोशिका तक नहीं । 	1	
	 एक बार जब किसी कोशिका में विद्युत आवेग जिनत होता है तथा संचारित होता 	1	
	• एक बार जब किसा काशिका में विद्युत आवेग जानत होता है तथा संचारित होता है, तो पुनः नया आवेग जनित करने तथा उसे संचारित करने के लिए कोशिका फिर	1	
	से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है ।	'	
	त अपना काषावाय का सुवारः करन म कुछ समय राता है । (कोई अन्य सीमा)		
	• रासायनिक संचार में संकेत (रासायनिक यौगिक) संभावित रूप से शरीर की सभी		
	कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और वांछित परिवर्तन प्रदान करते हैं।	1	3
	Ų l]	

	1		
31	• बिम्ब को F और P के बीच रखना चाहिए / दर्पण से 18 सेमी से कम दूरी पर	1	
	• दर्पण सूत्र = $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$	1/2	
	$\bullet QYO QA = v + u = f$		
	• आवर्धन m = +2		
	f = -18 cm		
	1 = - 10 Cm		
	12	1	
	$m = -\frac{v}{u} = +2$		
	v = -2u		
	<u>_1</u> + 1 = <u>_1</u>		
	_2u		
	<u>1</u> <u>1</u>		
	2u = -18 cm	1/2	
	u = -9 cm		3
32	(i)		
	• A - विद्युतरोधी	1/2	
	 B – मिश्रात् 	1/2	
	• C – चालक	1/2	
	(ii)		
	 A: प्लास्टिक – विद्युत इस्तरी का हैंडल। 	1/2	
	 B: नाइक्रोम - विद्युत इस्तरी में हीटिंग एलिमेंट / तापन तत्व के रूप 	1/2	
	में उपयोग किया जाता है।		
		1/2	
	- C. (IIMI - IMMICIL MY CIT).	/2	
	 		
	• A: विद्युत स्टोव: रबर के पैर।		
	 B: नाइक्रोम - विद्युत स्टोव में हीटिंग एलिमेंट / तापन तत्व के रूप में 		
	उपयोग किया जाता है।		
	• C: तांबा - बिजली के तार।		
	(किसी विद्युत साधित्र में इनके उपयोग का कोई अन्य उदाहरण)		
	(कि. सा वर्ष देश सामित वा रे कि. व वर्षा मेरा रे का व उपार्थ वा		3
33	 अपघटक(अपमार्जक) वे सूक्ष्मजीव हैं जो जिटल कार्बिनक पदार्थों को सरल 	1	
	अकार्बनिक पदार्थों में बदल देते हैं।		
	• उदाहरण: बैक्टीरिया(जीवाणु) और कवक	$\frac{1}{2} + \frac{1}{2}$	
	• अपघटन से बने सरल पदार्थ मिट्टी(मृदा) में चले जाते हैं और पौधों द्वारा पुनः उपयोग	1	
	में ले लिए जाते हैं, जिससे पारिस्थितिकी तंत्र का संतुलन बना रहता है (प्राकृतिक		
	पुनः पूर्ति)।		
			3

	 खण्ड – घ	
34	(A) H H	1/2 ; 1/2
	 H H 	1/2; 1/2
	ि	1/2 ; 1/2
	 CH₃CH₂OH Hot Conc H₂S_{O4} → CH₂ = CH₂ + H₂O	1/2
	$\begin{array}{ccc} & H & H \\ & & \\ & H - C = C - H + H_2 & \xrightarrow{N_i} CH_3 - CH_3 \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ $	1/2
	• C ₂ H ₆ + 7/2 O ₂ ^{>} 2CO ₂ + 3H ₂ O 'C' (संतुलन के लिए अंक ना काटे जाएँ)	1/2
	अथवा	
	(B) H OH	1/2 +1/2
	(ii) $CH_3COOH + C_2H_5OH \xrightarrow{acid} CH_3COOC_2H_5$ 'A' 'B'	1/2
	• अम्ल की भूमिका – एक उत्प्रेरक की तरह	1/2

		1	
	(iii) B (एस्टर) में तनु NaOH मिलाकर / साबुनीकरण / अम्ल या क्षार के साथ जल मिलाकर / NaOH को मिलाने पर अम्ल का सोडियम लवण प्राप्त होता है जिसे फिर से हाइड्रोलाइज् कर 'A ' को प्राप्त किया जा सकता है। (iv) गर्म एथेनॉल में क्षारीय पोटेशियम परमैंगनेट या अम्लीय पोटेशियम डाइक्रोमेट का विलयन डाल कर /	1	5
35	(A) (i) • पुनरूदभवन (पुनर्जनन): अपने शरीर के अंगों से नए जीव को जन्म देने की क्षमता / यदि किसी कारणवश जीव क्षत-विक्षत हो जाए अथवा कई टुकड़ों में काट दिया जाए, तो इसके अनेक टुकड़े वृधि कर एक नए जीव में विकसित हो जाते है। • पुनर्जनन दर्शाने वाले जीव: प्लैनेरिया /हाइड्रा • जीव में पुनर्जनन नहीं दिखता: स्पाइरोगाइरा (कोई अन्य उदाहरण) • क्योंकि इसमें विशिष्ट कोशिकाएं नहीं होतीं जो नई कोशिका प्रकारों और ऊतकों का निर्माण करने के लिए प्रविधत होती हैं।	1 1/ ₂ 1/ ₂	
	 स्पाइरोगाइरा ये खंडन विधि द्वारा जनन करते है । यह विकसित होकर छोटे छोटे टुकड़ों में खंडित हो जाता है यह टुकडे अथवा खंड वृधि कर ने जीव (व्यष्टि) में विकसित हो जाते हैं । अथवा	1/ ₂ 1/ ₂ 1	
	(B)(i) (a) शुक्रवाहिनी (b) वृषण (c) प्रोस्ट्रेट ग्रंथि / शुक्राशय (d) वृषण कोश	⅓2x4	
	(ii) शुक्राणु में आनुवांशिक पदार्थ , गति के लिए पूंछ , आकार में सूक्ष्म होते हैं । (कोई दो)	½x2	

	पुरुष की शुक्रवाहिकाओं और स्त्री की अंडवाहिनी अथवा फेलोपियन नलिका को अवरुद्ध कर निषेचन को रोका जाता है ।	½x2	
	असावधानीपूर्वक की गई शल्यक्रिया से संक्रमण हो सकता है ।	1	5
36	(A) (i)		3
	सही पैटर्न	1	
	सही दिशा	1	
	(ii) (a) • लाल तार : विधुन्मय तार • काला तार : उदासीन तार • हरा तार : भुसंपर्क तार (b) 220 V (c) इसका उपयोग सुरक्षा उपाय के रूप में किया जाता है। यह सुनिश्चित करता है कि साधित्र के धातु आवरण में यदि कोई विद्युत धारा का क्षरण हो तो इसका विभव पृथ्वी के विभव के बराबर बना रहे और उपयोगकर्ता को गंभीर झटका न लगे।	½x3 ½ 1	
	अथवा		
	(B) (i) (a) चालक AB विस्थापित हो जाता है। b) - प्रवाहित विद्युत धारा की दिशा उत्क्रमित कर।	1	
	- प्रवाहित विद्युत घारा का दिशा उत्क्रामत कर। - चुम्बकीय क्षेत्र की दिशा उत्क्रमित कर।	1+1	
	(ii) जब विद्युत् धारा की दिशा चुंबकीय क्षेत्र की दिशा के लम्बव होती है।	1	
	(iii) अपने बाएं हाथ के तर्जनी, मध्यमा तथा अंगूठे को इस प्रकार फैलाइए कि ये तीनों एक-दुसरे के परस्पर लंबवत हों। यदि तर्जनी चुंबकीय क्षेत्र की दिशा और		

	मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है, तो	1					
	अंगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की ओर संकेत						
	करेगा।		5				
27	खण्ड - ड						
37	(i) हाइड्रोक्लोरिक अम्ल /HCI और सोडियम हाइड्रोक्साइड/ NaOH	1/2 + 1/2					
	(ii)						
	- उदासीन	1/2					
	- क्योंकि यह प्रबल अम्ल और प्रबल क्षार का लवण है।	1/2					
	(iii) (A)						
	• सोडियम क्लोराइड (लवण जल) का जलीय विलयन वियोजित (विद्युत अपघटन)						
	होकर उत्पन्न करता है:	1/2					
		72					
	 कैथोड के पास NaOH विलयन 						
	• एनोड पर Cl₂	½ x3					
	• कैथोड पर H₂						
	अथवा						
	(iii)(B)						
	सोडियम क्लोराइड से धोने का सोडा निम्नलिखित अभिक्रियाओं द्वारा प्राप्त किया जाता है:						
	$-NaCI + H2O + CO2 + NH3 \longrightarrow NH4CI + NaHCO3$ Heat						
	$-2NaHCO_3 \xrightarrow{\text{Heat}} Na_2CO_3 + H_2O + CO_2$						
	- सोडियम कार्बोनेट के पुनःक्रिस्टलीकरण से धोने का सोडा प्राप्त होता है।	½ x 4					
	$-Na2CO3 + 10H2O \longrightarrow Na2CO3 .10H2O$						
			4				
38	(i) प्रतिवर्ती क्रिया.:		4				
	 पर्यावरण में किसी घटना की अनुक्रिया के फ़लस्वरूप अचानक हुई 	1/2					
	क्रिया ।	1/2					
	ו וריאו						
	(ii)						
	(a) प्रेरक तंत्रिका – मेरुरज्जु से कार्यकरअंग/पेशी तक संदेश पहुंचाती है	1/2					
		/2					
	(b) प्रतिसारण तंत्रिका – संवेदी तंत्रिका को प्रेरक तंत्रिका से जोड़ती है।						
	(iii)	1/2					
	(A) - केन्द्रीय तंत्रिका तंत्र.						
	संघटक: मस्तिष्क; मेरुरज्जु ,						
	-परिधीय तंत्रिका तंत्र	½ x4					
	संघटक: कपाल तंत्रिकाएँ; मेरु तंत्रिकाएँ.	72 X4					



	<u></u>	1	1
	अथवा		
	(iii)(B)		
	(a) अग्र्मस्तिष्क /प्रमस्तिष्क		
	(b) अनुमस्तिष्क / पश्च मस्तिष्क		
	(c) मेंडुलाa/ पश्च मस्तिष्क	½ x4	
	(d) अग्र्मस्तिष्क		4
39	(i) इन्द्रधनुष (कोई अन्य)	1	
	(ii) श्वेत प्रकाश का विक्षेपण होता है ।	1	
	(iii) (A)		
	 वायुमंडल में जल की सूक्ष्म बूंदों का उपस्थित होना 	1+1	
	• सूर्य पर्यवेक्षक के पीछे होना चाहिए।.		
	अथवा		
	(iii) (B)		
	Raindrop		
	Sunlight		
	⇔b	½ x4	
	ŶĊ		
	(आरेख का ½ अंक और प्रत्येक a, b, c का ½ अंक)		4

	अंकन योजना			
	पूरी तरह से गोपनीय			
	(केवल आंतरिक और प्रतिबंधित उपयोग के लिए)			
	माध्यमिक विद्यालय परीक्षा, 2025			
	विषय का नामः विज्ञान विषय कोडः 086 पेपर कोडः 31/4/2			
	सामान्य निर्देश: -			
1	आप जानते हैं कि अभ्यर्थियों के वास्तविक एवं सही मूल्यांकन में मूल्यांकन सबसे महत्वपूर्ण			
'	प्रक्रिया है। मूल्यांकन में एक छोटी सी गलती गंभीर समस्याओं का कारण बन सकती है जो			
	उम्मीदवारों के भविष्य, शिक्षा प्रणाली और शिक्षण पेशे को प्रभावित कर सकती है। गलतियों से			
	बचने के लिए आपसे अनुरोध है कि मूल्यांकन शुरू करने से पहले स्पॉट मूल्यांकन दिशानिर्देशों			
	को ध्यान से पढ़ें और समझें।			
2	"मूल्यांकन नीति एक गोपनीय नीति है क्योंकि यह आयोजित परीक्षाओं, किए गए मूल्यांकन और			
_	कई अन्य पहलुओं की गोपनीयता से संबंधित है। इसके किसी भी तरह से जनता के बीच लीक			
	होने से परीक्षा प्रणाली पटरी से उतर सकती है और लाखों उम्मीदवारों के जीवन और भविष्य पर			
	असर पड़ सकता है। इस नीति/दस्तावेज़ को किसी के साथ साझा करना, किसी पत्रिका में			
	प्रकाशित करना और समाचार पत्र/वेबसाइट आदि में छापना बोर्ड और आईपीसी के विभिन्न			
	नियमों के तहत कार्रवाई को आमंत्रित कर सकता है।			
3	मूल्यांकन अंकन योजना में दिए गए निर्देशों के अनुसार किया जाना है। इसे अपनी व्याख्या या			
	किसी अन्य विचार के अनुसार नहीं किया जाना चाहिए। अंकन योजना का कड़ाई से पालन			
	किया जाना चाहिए। हालाँकि, मूल्यांकन करते समय, जो उत्तर नवीनतम जानकारी या ज्ञान पर			
	आधारित हैं और/या नवीन हैं, अन्यथा उनकी सत्यता का मूल्यांकन किया जा सकता है और उन्हें			
	उचित अंक दिए जा सकते हैं। कक्षा-x में, दो योग्यता-आधारित प्रश्नों का मूल्यांकन करते समय,			
	कृपया दिए गए उत्तर को समझने का प्रयास करें और भले ही उत्तर अंकन योजना से न हो,			
	लेकिन उम्मीदवार द्वारा सही योग्यता गिनाई गई हो, उचित अंक दिए जाने चाहिए।			
4	अंकन योजना में उत्तरों के लिए केवल सुझाए गए मूल्य बिंदु हैं। ये केवल दिशानिर्देशों की प्रकृति			
	में हैं और संपूर्ण उत्तर का गठन नहीं करते हैं। विद्यार्थियों की अपनी अभिव्यक्ति हो सकती हैं			
	और यदि अभिव्यक्ति सही है तो उसके अनुसार उचित अंक दिये जाने चाहिए।			
5	प्रधान-परीक्षक को पहले दिन प्रत्येक मूल्यांकनकर्ता द्वारा मूल्यांकन की गई पहली पांच उत्तर			
	पुस्तिकाओं का अध्ययन करना होगा, ताकि यह सुनिश्चित हो सके कि मूल्यांकन अंकन योजना में			
	दिए गए निर्देशों के अनुसार किया गया है। यदि कोई भिन्नता हो तो विचार-विमर्श के बाद उसे			
	शून्य किया जाए। मूल्यांकन के लिए शेष उत्तर पुस्तिकाएं यह सुनिश्चित करने के बाद ही दी			
	जाएंगी कि व्यक्तिगत मूल्यांकनकर्ताओं के अंकन में कोई महत्वपूर्ण भिन्नता नहीं है।			
6	जहां भी उत्तर सही होगा, मूल्यांकनकर्ता (√) अंकित करेंगे। गलत उत्तर के लिए क्रॉस 'X' अंकित			
	किया जाए। मूल्यांकनकर्ता मूल्यांकन करते समय सही (🗸) नहीं ल्गाएंगे जिससे यह आभास			
	होगा कि उत्तर सही है और कोई अंक नहीं दिया गया है। यह सबसे आम गलती है जो			
	मूल्यांकनकर्ता कर रहे हैं।			
7	यदि किसी प्रश्न के कुछ भाग हैं, तो कृपया प्रत्येक भाग के लिए दाहिनी ओर अंक दें। फिर प्रश्न के			
	विभिन्न भागों के लिए दिए गए अंकों को जोड़ दिया जाना चाहिए और बाएं हाथ के हाशिये में			
<u> </u>	लिखा जाना चाहिए और घेरा बनाया जाना चाहिए। इसका सख्ती से पालन किया जा सके.			
8	यदि किसी प्रश्न में कोई भाग नहीं है, तो बाएं हाथ के हाशिए में अंक दिए जाने चाहिए और घेरा			
0	लगाना चाहिए। इसका भी सख्ती से पालन किया जा सकता है. यदि किसी छात्र ने एक अतिरिक्त प्रश्न का प्रयास किया है, तो अधिक अंकों के योग्य प्रश्न का			
9	उत्तर बरकरार रखा जाना चाहिए और दूसरे उत्तर को "अतिरिक्त प्रश्न" नोट के साथ काट दिया			
	जाना चाहिए।			
10	किसी त्रुटि के संचयी प्रभाव के लिए कोई अंक नहीं काटा जाएगा। इसे केवल एक बार दंडित			
10	किया जाना चाहिए।			
	ાયત્રા ત્યાંના સાહિદા			

बिंदु का एक पूर्ण स्कैन _80 (उदाहरण 0 से 80/70/60/50/40/30 अंक जैसा कि प्रश्न पत्र में दिया गया है) का उपयोग करना होगा। यदि यह उपयुक्त है तो कृपया आर्डिनरी में प्रवेश न लें। प्रत्येक परीक्षक को आवश्यक रूप से पूरे कार्य समय अर्थात प्रतिदिन 8 घंटे तक मूल्यांकन कार्य 12 करना होगा तथा मुख्य विषयों में प्रतिदिन 20 उत्तर पुस्तिकाओं तथा अन्य विषयों में प्रतिदिन 25 उत्तर पुस्तिकाओं का मूल्यांकन करना होगा (विवरण स्पॉट गाइडलाइन्स में दिया गया है)। सुनिश्चित करें कि आप अतीत में परीक्षक द्वारा की गई निम्नलिखित सामान्य प्रकार की त्रुटियाँ न 13 करें:- किसी उत्तर के लिए दिए गए अंक से अधिक अंक देना। • किसी उत्तर पर दिए गए अंकों का गलत योग। • उत्तर पुस्तिका के अंदर के पन्नों से मुख्य पृष्ठ पर अंकों का गलत स्थानांतरण। शीर्षक पृष्ठ पर गलत प्रश्नवार योग। • उत्तर पुस्तिका में उत्तर या उसके किसी भाग को बिना मूल्यांकन किये छोड देना। • शीर्षक पृष्ठ पर दो कॉलमों के अंकों का गलत योग। • गलत योग। • शब्दों और अंकों में अंकित चिह्न मेल नहीं खाते/समान नहीं। • उत्तर पुस्तिका से ऑनलाइन पुरस्कार सूची में अंकों का गलत स्थानांतरण। • उत्तरों को सही के रूप में चिह्नित किया गया, लेकिन अंक नहीं दिए गए। (सुनिश्चित करें कि सही टिक मार्क सही और स्पष्ट रूप से इंगित किया गया है। यह केवल एक पंक्ति होनी चाहिए। गलत उत्तर के लिए एक्स के साथ भी ऐसा ही है।) • उत्तर के आधे या कुछ भाग को सही और शेष को गलत चिह्नित किया गया, लेकिन कोई अंक नहीं दिया गया। उत्तर पुस्तिकाओं का मूल्यांकन करते समय यदि उत्तर पूरी तरह से गलत पाया जाता है, तो इसे क्रॉस (X) के रूप में चिह्नित किया जाना चाहिए और शून्य (0) अंक दिए जाने चाहिए। किसी भी मूल्यांकन न किए गए भाग, शीर्षक पृष्ठ पर अंक न ले जाना, या उम्मीदवार द्वारा पाई 15 गई कुल त्रुटि से मुल्यांकन कार्य में लगे सभी कर्मियों और बोर्ड की प्रतिष्ठा को नुकसान होगा। इसलिए, सभी संबंधित पक्षों की प्रतिष्ठा बनाए रखने के लिए, यह फिर से दोहराया जाता है कि निर्देशों का सावधानीपूर्वक और विवेकपूर्ण तरीके से पालन किया जाए। परीक्षकों को वास्तविक मूल्यांकन शुरू करने से पहले "स्पॉट मूल्यांकन के लिए दिशानिर्देश" में 16 दिए गए दिशानिर्देशों से परिचित होना चाहिए। प्रत्येक परीक्षक यह भी सुनिश्चित करेगा कि सभी उत्तरों का मूल्यांकन किया गया है, अंकों को 17 शीर्षक पृष्ठ पर ले जाया गया है, सही ढंग से योग किया गया हैं और अंकों और शब्दों में लिखा गया है। उम्मीदवार निर्धारित प्रसंस्करण शुल्क का भुगतान करके अनुरोध पर उत्तर पुस्तिका की 18 फोटोकॉपी प्राप्त करने के हकदार हैं। सभी परीक्षकों/अतिरिक्त प्रधान परीक्षकों/प्रधान परीक्षकों को एक बार फिर याद दिलाया जाता है कि उन्हें यह सुनिश्चित करना होगा कि मुल्यांकन अंकन

योजना में दिए गए प्रत्येक उत्तर के लिए मूल्य बिंदुओं के अनुसार सख्ती से किया जाए।

माध्यमिक विद्यालय परीक्षा, 2025 अंकन योजना

कक्षा: x विज्ञान (विषय कोड-086) [प्रश्न पत्र कोड: 31/4/2]

अधिकतम अंक: 80

प्र.सं	अपेक्षित उत्तर / मूल्य बिंदु	अंक	कुल अंक			
	खण्ड - क					
1	(c)/ 40cm	1	1			
2	(c) /100%; 75%	1	1			
3	(c)/ ৰীज	1	1			
4	(d)/ग्लेशियर(हिमनदी) का पिघलना	1	1			
5	(b)/ आघातवर्ध्यता	1	1			
6	(a)/ कैल्शियम क्लोराइड	1	1			
7	(d)/ प्रोपाइन	1	1			
8	(d)/ नर और मादा दोनों यूग्मक	1	1			
9	(b)/ नाइट्रोजन	1	1			
10	(b)/ B और D	1	1			
11	(c)/ DDT	1	1			
12	(c)/पौधे> मनुष्य	1	1			
13	(c)/ कांच का स्लैब	1	1			
14	(d)/9	1	1			
15	(c)/ 60	1	1			
16	(a)/ $4400~\Omega$	1	1			
17	(d)/ अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।	1	1			
18	(d)/ अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।	1	1			
19	(d)/ अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।	1	1			
20	(a)/ अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), की सही व्याख्या करता है ।	1	1			

	खण्ड – ख		
21	सुरक्षा उपाय : • मैग्नीशियम रिबन को पकड़ने के लिए चिमटे का उपयोग किया जाना चाहिए। • मैग्नीशियम रिबन को आंखों से दूर रखकर जलाएं। / आँखों की सुरक्षा के लिए उपुक्त चश्मा पहनना चाहिए। प्रेक्षण :	½ x2	
	 चमकदार श्वेत लौ दिखाई देती है श्वेत चूर्ण या राख बनता है 	½ x2	2
22	(A)		
	Incident ray B (1 अंक आरेख और ½ अंकित करने पर)	1½	
	• विचलन कोण	1/2	
	अथवा (B)		
	 द्विफोकसी लेंस द्विफोकसी लेंस का ऊपरी भाग अवतल लेंस से बना होता है तथा निचला भाग उत्तल लेंस से बना होता है। 	1/2	
	distance ्रिConcave lens near ्राConvex lens दूर और निकट दृष्टि को क्रमशः सुविधाजनक बनाने के लिए।	1/2	

	II.		
	• उत्तल लेंस.	1/2	
	 उत्तल लेंस किनारों की अपेक्षा बीच से मोटा होता है / 	1	
		'	
	• निकट दृष्टि को सुविधाजनक बनाने के लिए। (i और ii में से कोई एक)	1/2	2
23	क्षुद्रांत्र के आंतरिक आस्तर पर अनेक अंगुली जैसे प्रवर्ध होते हैं जिन्हें दीर्घरोम कहा जाता है,ये अवशोषण का सतही क्षेत्रफल बढ़ा देते है, दीर्घरोम में रुधिर वाहिकाओ की बहुतायत होती है जो भोजन को अवशोषित करके शरीर की प्रत्येक कोशिका तक पहुचाते हैं।	2	
			2
24	(i) • सभी लम्बे	1/2	
	• लम्बाई (लम्बा होना) एक प्रभावी लक्षण है	1/2	
	(ii) 1 : 1 (यदि मेंडल क्रॉस के माध्यम से समझाया जाए तो भी अंक प्रदान किए जाने चहिये)	1	2
25	(A) $Mg : \begin{array}{c} \times \times$	1	
	• ऋणायन - क्लोराइड आयन / (Cl ⁻)	1/2	
	• धनायन - मैग्नीशियम आयन / (Mg²+)	1/2	
	अथवा		
	(B)		
	(i) यदि जिंक, सल्फाइड अयस्क के रूप में हो तब: • भर्जन	1/2	
	$2ZnS + 3O_2 \xrightarrow{\text{Heat}} 2ZnO + 2SO_2$	1/2	
	- अपचयन	1/2	
	$ZnO + C \xrightarrow{Heat} Zn + CO$	1/2	

		1	
	(ii) यदि जिंक, कार्बोनेट अयस्क के रूप में हो तब:	1/2	
	• निस्तापन Heat	1/2	
	$ZnCO_3 \xrightarrow{Heat} ZnO + CO_2$	1/2	
	- अपचयन 	1/2	
	ZnO + C — Heat → Zn + CO (i और ii में से एक)		2
26	• विद्युत फ़्यूज़ एक सुरक्षा उपकरण है जिसका उपयोग विद्युत परिपथ में लघु पतन और अतिभारण के कारण विद्युत उपकरण (साधित्र) को होने वाली किसी भी क्षति को रोकने के लिए किया जाता है।	1	
	• यदि निर्धारित अनुमतांक के फ़्यूज़ तार को अधिक अनुमतांक वाले फ़्यूज़ तार से प्रतिस्थापित कर दिया जाए, तो फ़्यूज़ तार लघु पतन एवं अतिभारण की स्थिति में अनावश्यक उच्च धारा के प्रवाह के होने पर भी पिघलेगा नहीं और विद्युत	1	2
	उपकरण (साधित्र) क्षतिग्रस्त हो जाएगा।		
0.7	खण्ड - ग • अपघटक(अपमार्जक) वे सूक्ष्मजीव हैं जो जटिल कार्बनिक पदार्थों को सरल		
27	अकार्बनिक पदार्थों में बदल देते हैं। • उदाहरण: बैक्टीरिया (जीवाणु) और कवक	1 1/2+1/2	
	 अपघटन से बने सरल पदार्थ मिट्टी (मृदा) में चले जाते हैं और पौधों द्वारा पुनः उपयोग में ले लिए जाते हैं, जिससे पारिस्थितिकी तंत्र का संतुलन बना रहता है (प्राकृतिक पुन: पूर्ति)। 	1	3
28	(i) धातु D		3
20	(ii) कॉपर सल्फेट का नीला रंग गायब हो जाएगा	1x3	
	(iii) B > C > A > D		3
29	(i) A: फुफ्फुसीय धमनी B: फुफ्फुसीय शिरा C: महाधमनी D: महाशिरा	½ x4	
	 (ii) A के कार्य : विऑक्सीजिनत रुधिर को हृदय से फेफड़ों तक ले जाता है C के कार्य: ऑक्सीजिनत रुधिर को हृदय से शरीर के सभी भागों तक पहुँचाना । 	½ x2	3
30	(i)		
	• A - विद्युतरोधी	1/2	
	B – मिश्रातु	1/2	

		चालक	1/2	
	(ii)	ज्याप्रिक विस्तान राजनी का वैंटल।	1/	
		प्लास्टिक – विद्युत इस्तरी का हैंडल। नाइक्रोम - विद्युत इस्तरी में हीटिंग एलिमेंट / तापन तत्व के रूप	1/2	
	J B. 1	में उपयोग किया जाता है।	72	
	• C: d	तांबा - बिजली के तार. 🖊	1/2	
	• A: f	वेद्युत स्टोव: रबर के पैर।		
		गाइक्रोम - विद्युत स्टोव में हीटिंग एलिमेंट / तापन तत्व के रूप में		
		उपयोग किया जाता है।		
	• C: ₹	नांबा - बिजली के तार।		
	_	(किसी विद्युत साधित्र में इनके उपयोग का कोई अन्य उदाहरण)		3
31	• बिम	ब को C और F के बीच रखा जाना चहिए / दर्पण से 18cm और 36 cm बीच	1	
	• दर्प	ण सूत्र $=\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$	1/2	
	• आ	वर्धन m = - 2		
		f = -18 cm	1	
		$m = -\frac{v}{u} = -2$		
		$\dot{v} = 2u$		
	• - 2	$\frac{1}{2u} + \frac{1}{u} = \frac{1}{-18 cm}$		
		$\therefore \frac{3}{2u} = \frac{1}{-18 cm}$		
		u = -27 cm	1/2	3
32	(A)			
		भी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के		
		नाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को	1/2	
	_	ष्ट्र करने के लिए	1,	
		ामान संरक्षण का नियम सी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा	1/2	
		ता मा रासायानक जामाक्रया म प्रव्यमान का न ता ानमाण किया जा ज्ता है और न ही विनाश ।	1	
		$n + 2H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + 3H_2$	1	
		अथवा		
	(B)			
		ई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण भिक्रया कहलाती है।	1	

	T		
	 उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। 	1	
	Na ₂ SO ₄ (aq) + BaCl ₂ (aq) → BaSO ₄ (s) + 2NaCl(aq) ppt (कोई अन्य उदाहरण)	1	
			3
33	 विद्युत आवेग की सीमाएँ: वे केवल उन कोशिकाओं तक संचारित होते हैं जो तंत्रिका ऊतक से जुड़ी होती हैं, जंतु शरीर की प्रत्येक कोशिका तक नहीं । एक बार जब किसी कोशिका में विद्युत आवेग जिनत होता है तथा संचारित होता है, तो पुनः नया आवेग जिनत करने तथा उसे संचारित करने के लिए कोशिका फिर से अपनी कार्यविधि को सुचारू करने में कुछ समय लेती है । 	1	
	(कोई अन्य सीमा) • रासायनिक संचार में संकेत (रासायनिक यौगिक) संभावित रूप से शरीर की सभी कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और वांछित परिवर्तन प्रदान करते हैं।	1	3
	- ਬਾਤ – ਬ		
34	(A) (i) • संरचनात्मक समावयव : समान आणविक सूत्र लेकिन विभिन्न संरचनाओं वाले यौगिक	1	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/2 +1/2	
	• कारण : प्रोपेन में तीन कार्बन परमाणु होते हैं जिनमें शाखा बनाना संभव नहीं हैं / दो भिन्न कंकाली संरचना या संरचनाएँ संभव नहीं हैं।	1	
	(ii) • कार्बन डाइऑक्साइड, जल , ऊष्मा एवं प्रकाश उत्पन्न होते हैं। • रासायनिक समीकरण :	1/2	
	2C₄H₁0 +13 O₂ → 8CO₂ + 10H₂O +ऊष्मा एवं प्रकाश . (संतुलन को नजरअंदाज करें)	1/2	
i		1/2	
	 ब्यूटेन नीली (स्वच्छ) ज्वाला उत्पन्न करता है ब्यूटाइन धुंए वाली पीली ज्वाला के उत्पन्न करता है / कज्जली ज्वाला 	1/2	

				1
प्रोटॉन व	वार इलेक्ट्रॉन प्राप्त कर C ⁴⁻ ऋणायन बन वाले नाभिक के लिए दस इलेक्ट्रॉन अर्थात		1	
 कार्बन न इलेक्ट्रॉ 	रुरना मुश्किल होगा। वार इलेक्ट्रॉन खो कर C⁴+ धनायन बना स नों को खो कर छ: प्रोटॉन वाले नाभिक में धनायन बनाने के लिए अत्यधिक ऊर्जा की	केवल दो इलेक्ट्रोनों का	1	
	परमाणुओं का समूह / विषम परमाणु जे विशिष्ट गुणों को निर्धारित करता है, प्रका		1	
यौगिक	संरचनात्मक सूत्र	प्रकार्यात्मक समूह		
(a) एथेनॉल	H H H - C - C - OH / CH ₃ CH ₂ OH	– OH / एल्कोहल alcohol	½x4	
(b) एथेनॉइक अम्ल	H О I II H-С-С-ОН / СН₃СООН	- COOH / O - C - OH ,	, =	
	н у сызсоон	कार्बोक्सिलिक अम्ल		5
(A)				
(i)				
		सही पैटर्न	1	
		सही दिशा		
(ii) (a)		यहा ।दऱ्॥	1	
	ार : विधुन्मय तार गार : उदासीन तार		½x3	
	र : मुसपक तार			
• हरा ता	9			
• हरा ताः (b) 220 V	्र प्रोग सुरक्षा उपाय के रूप में किया जाता	, ,,	1/2	

	अथवा		
	(B)		
	(i) (a) चालक AB विस्थापित हो जाता है।	1	
	b)		
	- प्रवाहित विद्युत धारा की दिशा उत्क्रमित कर।	1+1	
	- चुम्बकीय क्षेत्र की दिशा उत्क्रमित कर।		
	(ii) जब विद्युत् धारा की दिशा चुंबकीय क्षेत्र की दिशा के लम्बव होती है।	1	
	(iii) अपने बाएं हाथ के तर्जनी, मध्यमा तथा अंगूठे को इस प्रकार फैलाइए कि ये तीनों एक-दुसरे के परस्पर लंबवत हों। यदि तर्जनी चुंबकीय क्षेत्र की दिशा और मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है, तो अंगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की ओर संकेत करेगा।	1	5
36	 (A) (i) पुनरूदभवन (पुनर्जनन): अपने शरीर के अंगों से नए जीव को जन्म देने की क्षमता / यदि किसी कारणवश जीव क्षत-विक्षत हो जाए अथवा कई टुकड़ों में काट दिया जाए, तो इसके अनेक टुकड़े वृधि कर एक नए जीव में विकसित हो जाते है। 	1	
	 पुनर्जनन दर्शाने वाले जीव: प्लैनेरिया /हाइड्रा जीव में पुनर्जनन नहीं दिखता: स्पाइरोगाइरा 	1/2	
	(कोई अन्य उदाहरण) • क्योंकि इसमें विशिष्ट कोशिकाएं नहीं होतीं जो नई कोशिका प्रकारों और	1/2	
	ऊतकों का निर्माण करने के लिए प्रवर्धित होती हैं।	1	
	(ii) • स्पाइरोगाइरा	1/2	
	 ये खंडन विधि द्वारा जनन करते है । यह विकसित होकर छोटे छोटे टुकड़ों में खंडित हो जाता है यह टुकडे अथवा 	1/2	
	खंड वृधि कर ने जीव (व्यष्टि) में विकसित हो जाते हैं ।	1	
	अथवा		
	(B)(i)		
	(a) शुक्रवाहिनी	½x4	
	(b) वृषण (c) प्रोस्ट्रेट ग्रंथि / शुक्राशय	72X 4	

	(d) वृषण कोश		
	(ii) शुक्राणु में आनुवांशिक पदार्थ , गति के लिए पूंछ , आकार में सूक्ष्म होते हैं । (कोई दो)	½x2	
	 (iii) पुरुष की शुक्रवाहिकाओं और स्त्री की अंडवाहिनी अथवा फेलोपियन निलका को अवरुद्ध कर निषेचन को रोका जाता है । असावधानीपूर्वक की गई शल्यक्रिया से संक्रमण हो सकता है । 	½x2	5
	खण्ड - ड	1	<u> </u>
37	(i) इन्द्रधनुष (कोई अन्य) (ii) श्वेत प्रकाश का विक्षेपण होता है । (iii) (A)	1 1	
	 वायुमंडल में जल की सूक्ष्म बूंदों का उपस्थित होना सूर्य पर्यवेक्षक के पीछे होना चाहिए।. 	1+1	
	अथवा (iii) (B)		
	Suntight	½ x4	4
20	(i) हाइड्रोक्लोरिक अम्ल /HCI और सोडियम हाइड्रोक्साइड/ NaOH	1/2 + 1/2	7
38	(ii) - उदासीन - क्योंकि यह प्रबल अम्ल और प्रबल क्षार का लवण है। (iii) (A)	1/2 1/2 1/2	
	 सोडियम क्लोराइड (लवण जल) का जलीय विलयन वियोजित (विद्युत अपघटन) होकर उत्पन्न करता है: कैथोड के पास NaOH विलयन 	1/2	
	 एनोड पर Cl₂ कैथोड पर H₂ अथवा 	½ x3	

(iii)(B)		
<u> </u>		
	1/ /	
	¹ /2 X 4	
		4
	1/2	
	1/2	
	1/2	
(a) प्ररंक तात्रका – मरुरेष्णु सं कार्यकरअग/पंशा तक सदश पहुँचाता ह		
(b) प्रतिसारण तंत्रिका – संवेदी तंत्रिका को प्रेरक तंत्रिका से जोड़ती है।	1/2	
	/2	
(A) - केन्द्रीय तंत्रिका तंत्र.		
संघटक: मस्तिष्क; मेरुरज्जु ,	½ x4	
-परिधीय तंत्रिका तंत्र		
संघटक: कपाल तंत्रिकाएँ; मेरु तंत्रिकाएँ.		
अथवा		
(iii)(B)		
(a) अग्र्मस्तिष्क /प्रमस्तिष्क		
	1/4	
	¹ ⁄2 X4	
(d) अग्र्मस्तिष्क		4
	सोडियम क्लोराइड से धोने का सोडा निम्निलिखित अभिक्रियाओं द्वारा प्राप्त किया जाता है: -NaCl + H2O + CO2 + NH3 \rightarrow NH4Cl + NaHCO3 -2NaHCO3 \rightarrow Na2CO3 + H2O + CO2 - सोडियम कार्बोनेट के पुनः क्रिस्टलीकरण से धोने का सोडा प्राप्त होता है। -Na2CO3 + 10H2O \rightarrow Na2CO3 .10H2O (i) प्रतिवर्ती क्रिया: • पर्यावरण में किसी घटना की अनुक्रिया के फ़लस्वरूप अचानक हुई क्रिया । (ii) (a) प्रेरक तंत्रिका - मेरुरु से कार्यकरअंग/पेशी तक संदेश पहुंचाती है (b) प्रतिसारण तंत्रिका - संवेदी तंत्रिका को प्रेरक तंत्रिका से जोड़ती है। (iii) (A) - केन्द्रीय तंत्रिका तंत्र. संघटक: मस्तिष्क; मेरुरु , -परिधीय तंत्रिका तंत्र संघटक: कपाल तंत्रिकाएँ; मेरु तंत्रिकाएँ. अथवा (iii)(B) (a) अग्रमस्तिष्क / पश्च मस्तिष्क (b) अनुमस्तिष्क / पश्च मस्तिष्क (c) मेडुलाa/ पश्च मस्तिष्क	सोडियम क्लोराइड से धोने का सोडा निम्नलिखित अभिक्रियाओं द्वारा प्राप्त किया जाता है: -NaCl + H2O + CO2 + NH3 \to NH4Cl + NaHCO3 -2NaHCO3 \to Heat \to Na2CO3 + H2O + CO2 - सोडियम कार्बोनेट के पुनः क्रिस्टलीकरण से धोने का सोडा प्राप्त होता है। -Na2CO3 + 10H2O \to Na2CO3 .10H2O (i) प्रतिवर्ती क्रिया.: • पर्यावरण में किसी घटना की अनुक्रिया के फ़लस्वरूप अचानक हुई क्रिया । (ii) (a) प्रेरक तंत्रिका - मेरुरज्जु से कार्यकरअंग/पेशी तक संदेश पहुंचाती है (b) प्रतिसारण तंत्रिका - संवेदी तंत्रिका को प्रेरक तंत्रिका से जोड़ती है। (iii) (A) - केन्द्रीय तंत्रिका तंत्र. संघटक: मस्तिष्क; मेरुरज्जु -परिधीय तंत्रिका तंत्र संघटक: कपाल तंत्रिकाएँ; मेरु तंत्रिकाएँ. अथवा (iii)(B) (a) अग्रमस्तिष्क /प्रमस्तिष्क (b) अनुमस्तिष्क /पश्च मस्तिष्क (c) मेडुलाa/ पश्च मस्तिष्क

अंकन योजना पूरी तरह से गोपनीय (केवल आंतरिक और प्रतिबंधित उपयोग के लिए) माध्यमिक विद्यालय परीक्षा, 2025

विषय का नामः विज्ञान विषय कोडः 086 पेपर कोडः 31/4/3

सामान्य निर्देश: -

- आप जानते हैं कि अभ्यर्थियों के वास्तविक एवं सही मूल्यांकन में मूल्यांकन सबसे महत्वपूर्ण प्रक्रिया है। मूल्यांकन में एक छोटी सी गलती गंभीर समस्याओं का कारण बन सकती है जो उम्मीदवारों के भविष्य, शिक्षा प्रणाली और शिक्षण पेशे को प्रभावित कर सकती है। गलतियों से बचने के लिए आपसे अनुरोध है कि मूल्यांकन शुरू करने से पहले स्पॉट मूल्यांकन दिशानिर्देशों को ध्यान से पढ़ें और समझें।
- 2 "मूल्यांकन नीति एक गोपनीय नीति है क्योंकि यह आयोजित परीक्षाओं, किए गए मूल्यांकन और कई अन्य पहलुओं की गोपनीयता से संबंधित है। इसके किसी भी तरह से जनता के बीच लीक होने से परीक्षा प्रणाली पटरी से उतर सकती है और लाखों उम्मीदवारों के जीवन और भविष्य पर असर पड़ सकता है। इस नीति/दस्तावेज़ को किसी के साथ साझा करना, किसी पत्रिका में प्रकाशित करना और समाचार पत्र/वेबसाइट आदि में छापना बोर्ड और आईपीसी के विभिन्न नियमों के तहत कार्रवाई को आमंत्रित कर सकता है।
- मूल्यांकन अंकन योजना में दिए गए निर्देशों के अनुसार किया जाना है। इसे अपनी व्याख्या या किसी अन्य विचार के अनुसार नहीं किया जाना चाहिए। अंकन योजना का कड़ाई से पालन किया जाना चाहिए। हालाँकि, मूल्यांकन करते समय, जो उत्तर नवीनतम जानकारी या ज्ञान पर आधारित हैं और/या नवीन हैं, अन्यथा उनकी सत्यता का मूल्यांकन किया जा सकता है और उन्हें उचित अंक दिए जा सकते हैं। कक्षा-X में, दो योग्यता-आधारित प्रश्नों का मूल्यांकन करते समय, कृपया दिए गए उत्तर को समझने का प्रयास करें और भले ही उत्तर अंकन योजना से न हो, लेकिन उम्मीदवार द्वारा सही योग्यता गिनाई गई हो, उचित अंक दिए जाने चाहिए।
- 4 अंकन योजना में उत्तरों के लिए केवल सुझाए गए मूल्य बिंदु हैं। ये केवल दिशानिर्देशों की प्रकृति में हैं और संपूर्ण उत्तर का गठन नहीं करते हैं। विद्यार्थियों की अपनी अभिव्यक्ति हो सकती है और यदि अभिव्यक्ति सही है तो उसके अनुसार उचित अंक दिये जाने चाहिए।
- 5 प्रधान-परीक्षक को पहले दिन प्रत्येक मूल्यांकनकर्ता द्वारा मूल्यांकन की गई पहली पांच उत्तर पुस्तिकाओं का अध्ययन करना होगा, ताकि यह सुनिश्चित हो सके कि मूल्यांकन अंकन योजना में दिए गए निर्देशों के अनुसार किया गया है। यदि कोई भिन्नता हो तो विचार-विमर्श के बाद उसे शून्य किया जाए। मूल्यांकन के लिए शेष उत्तर पुस्तिकाएं यह सुनिश्चित करने के बाद ही दी जाएंगी कि व्यक्तिगत मूल्यांकनकर्ताओं के अंकन में कोई महत्वपूर्ण भिन्नता नहीं है।
- 6 जहां भी उत्तर सही होगा, मूल्यांकनकर्ता (√) अंकित करेंगे। गलत उत्तर के लिए क्रॉस 'X' अंकित किया जाए। मूल्यांकनकर्ता मूल्यांकन करते समय सही (✓) नहीं लगाएंगे जिससे यह आभास होगा कि उत्तर सही है और कोई अंक नहीं दिया गया है। यह सबसे आम गलती है जो मूल्यांकनकर्ता कर रहे हैं।
- 7 यदि किसी प्रश्न के कुछ भाग हैं, तो कृपया प्रत्येक भाग के लिए दाहिनी ओर अंक दें। फिर प्रश्न के विभिन्न भागों के लिए दिए गए अंकों को जोड़ दिया जाना चाहिए और बाएं हाथ के हाशिये में लिखा जाना चाहिए और घेरा बनाया जाना चाहिए। इसका सख्ती से पालन किया जा सके.
- 8 यदि किसी प्रश्न में कोई भाग नहीं है, तो बाएं हाथ के हाशिए में अंक दिए जाने चाहिए और घेरा लगाना चाहिए। इसका भी सख्ती से पालन किया जा सकता है.
- 9 यदि किसी छात्र ने एक अतिरिक्त प्रश्न का प्रयास किया है, तो अधिक अंकों के योग्य प्रश्न का उत्तर बरकरार रखा जाना चाहिए और दूसरे उत्तर को "अतिरिक्त प्रश्न" नोट के साथ काट दिया जाना चाहिए।
- 10 किसी त्रुटि के संचयी प्रभाव के लिए कोई अंक नहीं काटा जाएगा। इसे केवल एक बार दंडित किया जाना चाहिए।

- 11 बिंदु का एक पूर्ण स्कैन _80 (उदाहरण 0 से 80/70/60/50/40/30 अंक जैसा कि प्रश्न पत्र में दिया गया है) का उपयोग करना होगा। यदि यह उपयुक्त है तो कृपया आर्डिनरी में प्रवेश न लें।
- 12 प्रत्येक परीक्षक को आवश्यक रूप से पूरे कार्य समय अर्थात प्रतिदिन 8 घंटे तक मूल्यांकन कार्य करना होगा तथा मुख्य विषयों में प्रतिदिन 20 उत्तर पुस्तिकाओं तथा अन्य विषयों में प्रतिदिन 25 उत्तर पुस्तिकाओं का मूल्यांकन करना होगा (विवरण स्पॉट गाइडलाइन्स में दिया गया है)।
- 13 सुनिश्चित करें कि आप अतीत में परीक्षक द्वारा की गई निम्नलिखित सामान्य प्रकार की त्रुटियाँ न करें:- किसी उत्तर के लिए दिए गए अंक से अधिक अंक देना।
 - किसी उत्तर पर दिए गए अंकों का गलत योग।
 - उत्तर पुस्तिका के अंदर के पन्नों से मुख्य पृष्ठ पर अंकों का गलत स्थानांतरण।
 शीर्षक पृष्ठ पर गलत प्रश्नवार योग।
 - उत्तर पुस्तिका में उत्तर या उसके किसी भाग को बिना मूल्यांकन किये छोड़ देना।
 - शीर्षक पृष्ठ पर दो कॉलमों के अंकों का गलत योग।
 - गलत योग।
 - शब्दों और अंकों में अंकित चिह्न मेल नहीं खाते/समान नहीं।
 - उत्तर पुस्तिका से ऑनलाइन पुरस्कार सूची में अंकों का गलत स्थानांतरण।
 - उत्तरों को सही के रूप में चिह्नित किया गया, लेकिन अंक नहीं दिए गए। (सुनिश्चित करें कि सही टिक मार्क सही और स्पष्ट रूप से इंगित किया गया है। यह केवल एक पंक्ति होनी चाहिए। गलत उत्तर के लिए एक्स के साथ भी ऐसा ही है।)
 - उत्तर के आधे या कुछ भाग को सही और शेष को गलत चिह्नित किया गया, लेकिन कोई अंक नहीं दिया गया।
- 14 उत्तर पुस्तिकाओं का मूल्यांकन करते समय यदि उत्तर पूरी तरह से गलत पाया जाता है, तो इसे क्रॉस (X) के रूप में चिह्नित किया जाना चाहिए और शून्य (0) अंक दिए जाने चाहिए।
- 15 किसी भी मूल्यांकन न किए गए भाग, शीर्षक पृष्ठ पर अंक न ले जाना, या उम्मीदवार द्वारा पाई गई कुल त्रुटि से मूल्यांकन कार्य में लगे सभी कर्मियों और बोर्ड की प्रतिष्ठा को नुकसान होगा। इसलिए, सभी संबंधित पक्षों की प्रतिष्ठा बनाए रखने के लिए, यह फिर से दोहराया जाता है कि निर्देशों का सावधानीपूर्वक और विवेकपूर्ण तरीके से पालन किया जाए।
- 16 परीक्षकों को वास्तविक मूल्यांकन शुरू करने से पहले "स्पॉट मूल्यांकन के लिए दिशानिर्देश" में दिए गए दिशानिर्देशों से परिचित होना चाहिए।
- 17 प्रत्येक परीक्षक यह भी सुनिश्चित करेगा कि सभी उत्तरों का मूल्यांकन किया गया है, अंकों को शीर्षक पृष्ठ पर ले जाया गया है, सही ढंग से योग किया गया है और अंकों और शब्दों में लिखा गया है।
- 18 उम्मीदवार निर्धारित प्रसंस्करण शुल्क का भुगतान करके अनुरोध पर उत्तर पुस्तिका की फोटोकॉपी प्राप्त करने के हकदार हैं। सभी परीक्षकों/अतिरिक्त प्रधान परीक्षकों/प्रधान परीक्षकों को एक बार फिर याद दिलाया जाता है कि उन्हें यह सुनिश्चित करना होगा कि मूल्यांकन अंकन योजना में दिए गए प्रत्येक उत्तर के लिए मूल्य बिंदुओं के अनुसार सख्ती से किया जाए।

माध्यमिक विद्यालय परीक्षा, 2025 अंकन योजना

कक्षा: x विज्ञान (विषय कोड-086) [प्रश्न पत्र कोड: 31/4/3]

अधिकतम अंक: 80

प्र.सं	अपेक्षित उत्तर / मूल्य बिंदु	अंक	कुल अंक
	खण्ड - क		
1	(c)/ DDT	1	1
2	(c)/ पौधे> मनुष्य	1	1
3	(b)/ मैग्नीशियम	1	1
4	(c)/ कांच का स्लैब	1	1
5	(d)/ 9	1	1
6	(d)/ ग्लेशियर (हिमनदी) का पिघलना	1	1
7	(a)/ कैल्शियम क्लोराइड	1	1
8	(d)/ प्रोपाइन	1	1
9	(b)/ नाइट्रोजन	1	1
10	(c)/ 60	1	1
11	(a)/ 4400 Ω	1	1
12	(b)/ B और D	1	1
13	(c)/ बीज	1	1
14	(c)/ 100%; 75%	1	1
15	(a)/ परागकोश	1	1
16	(c)/ 40cm	1	1
17	(a) / अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है ।	1	1
18	(d) / अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।	1	1
19	(d) अभिकथन (A) गलत है, परन्तु कारण (R) सही है ।	1	1
20	(b) / अभिकथन (A) और कारण (R) दोनों सही हैं परन्तु कारण (R) अभिकथन (A) की सही व्याख्या नहीं करता है ।	1	1

	ਕੁਾਂਤ – ख		
21	• सिल्वर ब्रोमाइड (AgBr) / सिल्वर क्लोराइड (AgCl)	1	
	• उष्माशोषी अभिक्रिया	1/2	
	पुष्टि : ऊर्जा की आवश्यकता होती है / अभिकारकों के वियोजन के लिए	1/2	
	सूर्य के प्रकाश की आवश्यकता होती है।		2
22	(A)		
	• $Ca \longrightarrow Ca^{2+} + 2e^{-}$	1/2	
	• CI + e	1/2	
	•		
	$Ca : \begin{array}{c} \overset{\times \times}{\underset{\times \times}{\overset{\times}{\times}}} \\ + & \overset{\times \times}{\underset{\times \times}{\overset{\times}{\times}}} \\ & \xrightarrow{Calcium chloride} \end{array} \longrightarrow \begin{bmatrix} ca^{2+} \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	1	
	अथवा		
	31.141		
	(B)		
	•उभयधर्मी ऑक्साइड अम्ल तथा क्षारक दोनों से अभिक्रिया करके लवण	1	
	तथा जल प्रदान करते है । •अभिक्रियाएँ :		
	• जामाप्रयार . $Al_2O_3 + 6HCl \rightarrow 2AlCl_3 + 3H_2O$	1/2	
	$Al_2O_3 + 3NaOH \rightarrow 2NaAlO_2 + H_2O$	1/2	2
	(संतुलन को नजर अंदाज़ किया जाए)		
23	• जाइलम और फ्लोएम	1/2 +1/2	
	 जाइलम – मृदा से प्राप्त जल और खनिज लवणों को पौधे के विभिन्न भागों तक पहुँचाता है 	1/2	
	• फ्लोएम –भोजन का पत्तियों से पादपों के अन्य भागों में परिवहन /	1/2	2
24	विलेय उत्पादों का स्थानांतरण। (A)		
24	(^)		
	A contract of the contract of		
	G. D. Angle of deviation	1½	
		1 / 2	
	Incident ray Emergent ray		
	B		
	(1 अंक आरेख और 1/2 अंकित करने पर)		
	• विचलन कोण	1/2	

	अथवा (B)		
	 द्विफोकसी लेंस द्विफोकसी लेंस का ऊपरी भाग अवतल लेंस से बना होता है तथा निचला भाग उत्तल लेंस से बना होता है। 	1/2	
	distance Carcave lens		
	• दूर और निकट दृष्टि को क्रमशः सुविधाजनक बनाने के लिए।	1/2	
	॥. • उत्तल लेंस.	1/2	
	• उत्तल लेंस किनारों की अपेक्षा बीच से मोटा होता है /	1	
	• निकट दृष्टि को सुविधाजनक बनाने के लिए। (i और ii में से कोई एक)	1/2	2
25	Flowchart		2
	Mother's Ova Father's Sperm Gametes X X Y	2	
	Zygote XX XX XY XY		
	Offsprings Female child Male Child		
	यदि X गुणसूत्र वाला शुक्राणु, X गुणसूत्र वाले अंडाणु को निषेचित करता है, तो पैदा होने वाला बच्चा लड़की होगी। यदि Y गुणसूत्र वाला शुक्राणु, X गुणसूत्र वाले अंडाणु को निषेचित करता है, तो पैदा होने वाला बच्चा लड़का होगा।		
	તારા ત્ર ત્યા રાઇતરા હાના		2

			,
26	Variable resistance	1	
	• दक्षिण – हस्त अंगुष्ठ नियम।	1	2
	खण्ड - ग		
27	 बिम्ब को F और P के बीच रखना चाहिए / दर्पण से 18 सेमी से कम दूरी पर 	1	
	• दर्पण सूत्र = $\frac{1}{v}$ + $\frac{1}{u}$ = $\frac{1}{f}$	1/2	
	आवर्धन m = +2		
	f = -18 cm	1	
	$m = -\frac{v}{u} = +2$ $v = -2u$		
	$\frac{1}{-2 u} + \frac{1}{u} = \frac{1}{-18 cm}$		
	$\frac{1}{2u} = \frac{1}{-18 \text{ cm}}$	1/	
	u = -9cm	1/2	3
28	 विद्युत अपघटनी इस प्रक्रम में अशुद्ध धातु को ऐनोड तथा शुद्ध धातु की पतली परत को कैथोड बनाया जाता है। धातु के लवण विलयन का उपयोग विद्युत अपघट्य के रूप में होता है। विद्युत अपघट्य से जब विद्युत धारा प्रवाहित की जाती है तब ऐनोड पर स्थित अशुद्ध 	1	
	धातु विद्युत अपघट्य में घुल जाती है। इतनी ही मात्रा में शुद्ध धातु विद्युत अपघट्य से कैथोड पर निक्षेपित हो जाती है। विलेय अशुद्धियाँ विलयन में चली जाती हैं तथा अविलेय अशुद्धियाँ ऐनोड तली पर निक्षेपित हो जाती है जिसे ऐनोड पंक कहते हैं।	2	
	/		

विद्यालय के प्रसाम्। अस्ति में स्वयान के प्रथान के प्रयान के प्रथान के प्रथान के प्रथान के प्रथान के प्रथान के प्रथान के प्रयान के प्रथान के प्र		V		
(यदि चित्रात्मक रूप से समझाया जाए तो भी अंक प्रदान किए जाएँ) • ग्लूकोज के विखंडन से पाइरूवेट या पाइरुविक अम्ल का बनना । • कोशिका के कोशिकाइव्य में होता है । • कोशिका अंक्सीजन की उपस्थित में : कोशिका अंक्सीजन की उपस्थित में : कोशिका अंक्सीजन की उपस्थित में : कोशिका अंक्सीजन की अपनिकंद कार्यमाल कार्य : (ii) ऑवसीजन की कमी के कारण : कोशिका अंक्सीजन का अभाव के लिक्टक अम्ल + ऊर्जा 1 30 (A) किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 3Zn + 2H ₃ PO ₄ — > Zn ₃ (PO ₄) ₂ + 3H ₂ 1 32 (B) • कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिक्रिया कहलाती है। • उदाहरण: जब सोडियम सत्फेट विलयन को बेरियम बलोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। • Na ₂ SO ₄ (aq)+ BaCl ₂ (aq) — BaSO ₄ (s)+ 2NaCl(aq) ppt		e l		
(यदि चित्रात्मक रूप से समझाया जाए तो भी अंक प्रदान किए जाएँ) • ग्लूकोज के विखंडन से पाइरूवेट या पाइरुविक अम्ल का बनना । • कोशिका के कोशिकाद्रव्य में होता है । (i) ऑक्सीजन की उपस्थिति में : कोशिका प्रवाम पायकेट (ii) ऑक्सीजन की कमी के कारण : कोशिका प्रवाम पायकेट (iii) ऑक्सीजन की कमी के कारण : कोशिका प्रवाम पायकेट (iii) ऑक्सीजन के अभाव विद्युक्त अम्ल + ऊर्जा 1 3 (A) किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • उदाहरण: जब सोडियम अस्पेक्ष प्रविचाय पदार्थ) बनता है, अवक्षेपण अभिक्रिया कहलाती है। • उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। • Na₂SO₄ (aq) + BaCl₂ (aq) → BaSO₄ (s) + 2NaCl(aq) ppt		Cu²+ copper sulphate solution		
• ग्लूकोज के विखंडन से पाइरूवेट या पाइरुविक अग्ल का बनना । • कोशिका के कोशिकाद्रव्य में होता है । (i) ऑक्सीजन की उपस्थिति में :				
कोशिका के कोशिकाद्रव्य में होता है । (i) ऑक्सीजन की उपस्थिति में : कोशिका अंक्सीजन की उपस्थिति में : कोशिका अंक्सीजन की उपस्थिति कार्यम डाइऑक्साइड + जल + ऊर्जा (ii) ऑक्सीजन की कमी के कारण : कोशिका अंक्सीजन अर्था के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए द्रव्यमान संरक्षण का नियम किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । उटा + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ अथवा (B) कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिक्रिया कहलाती है। उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। Na₂SO₄ (aq)+ BaCl₂ (aq) → BaSO₄ (s)+ 2NaCl(aq) ppt 1 10 11 12 12 13 14 14 14 14 14 14 14	20		1/-	3
(i) ऑक्सीजन की उपस्थिति में : कोशिका प्रविकोज प्राथित के आंक्सीजन की उपस्थित जगरिय कार्बन डाइऑक्साइड + जल + ऊर्जा (ii) ऑक्सीजन की कमी के कारण : कोशिका प्रविकोज प्राथित कार्जिस कार्बन डाइऑक्साइड + जल + ऊर्जा 1 30 (A) किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • उदा + 2H3PO4 — Zn3(PO4)2 + 3H2 1 32 (B) • कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिक्रिया कहलाती है। • उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। • Na2SO4(aq)+ BaCl2(aq) — BaSO4 (s)+ 2NaCl(aq) ppt	29	• ग्लूकाज के विखंडन से पाइरूवट या पाइरुविक अम्ल का बनना ।	1/2	
कोशिका उपस्थित कार्बन बाइऑक्साइड + जल + ऊर्जा 1 (ii) ऑक्सीजन की कमी के कारण : कोशिका ज्ञां के प्रायक्वेट ऑक्सीजन का जमां के कारण : कोशिका ज्ञां की किसी का अभाव का अभाव के तिबटक अम्ल + ऊर्जा 1 3 (A) किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए द्रव्यमान संरक्षण का नियम किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ 1 3थवा (B) • कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिक्रिया कहलाती है। • उदाहरणः जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। • Na₂SO₄ (aq) + BaCl₂ (aq) → BaSO₄ (s) + 2NaCl(aq) ppt		• कोशिका के कोशिकाद्र्व्य में होता है ।	1/2	
कोशिका ज्रांकसीजन का अभाव विद्युक्त आर + ऊर्जा 1 3 30 (A) किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए द्रव्यमान संरक्षण का नियम ½ ½ ½ ½ ½ ½ ½ ½ ½		कोशिका ऑक्सीजन की इन्स्य में उपस्थिति	1	
कोशिका ज्रांकसीजन का अभाव विद्युक्त आर + ऊर्जा 1 3 30 (A) किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए द्रव्यमान संरक्षण का नियम ½ ½ ½ ½ ½ ½ ½ ½ ½		(ii) ऑक्सीजन की कमी के कारण ·		
30 (A) किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ 1 अथवा (B) • कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिक्रिया कहलाती है। • उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। • Na₂SO₄ (aq)+ BaCl₂ (aq) → BaSO₄ (s)+ 2NaCl(aq) ppt		• •		
30 (A) किसी रासायनिक अभिक्रिया के पहले एवं उसके पश्चयात प्रत्येक तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ 1 3थवा (B) • कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिक्रिया कहलाती है। • उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। • Na₂SO₄ (aq) + BaCl₂ (aq) → BaSO₄ (s) + 2NaCl(aq) ppt		द्व्य में का अभाव	1	3
तत्व के परमाणुओं की संख्या सामान रहती है / द्रव्यमान संरक्षण के नियम को संतुष्ट करने के लिए • द्रव्यमान संरक्षण का नियम • किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । • 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ 1 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ 1 32n + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ 2 10n + 34n + 3	30			
 किसी भी रासायनिक अभिक्रिया में द्रव्यमान का न तो निर्माण किया जा सकता है और न ही विनाश । 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ 1 अथवा (B) कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिक्रिया कहलाती है। उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। Na₂SO₄ (aq)+ BaCl₂ (aq) → BaSO₄ (s)+ 2NaCl(aq) ppt 			1/2	
 किया जा सकता है और न ही विनाश । 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ अथवा (B) कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिक्रिया कहलाती है। उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। Na₂SO₄ (aq)+ BaCl₂ (aq) → BaSO₄ (s)+ 2NaCl(aq) ppt 		• द्रव्यमान संरक्षण का नियम	1/2	
 3Zn + 2H₃PO₄ → Zn₃(PO₄)₂ + 3H₂ 32aq (B) कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिक्रिया कहलाती है। उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। Na₂SO₄ (aq)+ BaCl₂ (aq) → BaSO₄ (s)+ 2NaCl(aq) ppt 			1	
 (B) कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिक्रिया कहलाती है। उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। Na₂SO₄ (aq)+ BaCl₂ (aq) → BaSO₄ (s)+ 2NaCl(aq) ppt 		· · · · · ·	1	
 कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है, अवक्षेपण अभिक्रिया कहलाती है। उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। Na₂SO₄ (aq)+ BaCl₂ (aq) → BaSO₄ (s)+ 2NaCl(aq) ppt 		अथवा		
 उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप बनता है। Na₂SO₄ (aq)+ BaCl₂ (aq) → BaSO₄ (s)+ 2NaCl(aq) ppt 		• कोई भी अभिक्रिया जिसमें अवक्षेप (अविलय पदार्थ) बनता है,	1	
ppt		 उदाहरण: जब सोडियम सल्फेट विलयन को बेरियम क्लोराइड विलयन के मिलाया जाता है तो बेरियम सल्फेट का सफेद अवक्षेप 	1	
		· · · · · · · · · · · · · · · · · · ·	1	
				3

31	 अपघटक(अपमार्जक) वे सूक्ष्मजीव हैं जो जटिल कार्बनिक पदार्थों 	1	
	को सरल अकार्बनिक पदार्थीं में बदल देते हैं।		
	• उदाहरण: बैक्टीरिया(जीवाणु) और कवक	$\frac{1}{2} + \frac{1}{2}$	
	• अपघटन से बने सरल पदार्थ मिट्टी(मृदा) में चले जाते हैं और पौधों	4	
	द्वारा पुनः उपयोग में ले लिए जाते हैं, जिससे पारिस्थितिकी तंत्र का	1	
20	संतुलन बना रहता है (प्राकृतिक पुन: पूर्ति)।		3
32	• एकांक आवेश को एक बिंदु से दूसरे बिंदु तक ले जाने में किया	1	
	गया कार्य / (V=W/Q)	1/2	
	• वोल्ट (V)		
	• किसी विद्युत धारावाही चालक के दो बिन्दुओं के बीच एक कूलाम	1	
	आवेश को एक बिंदु से दूसरे बिंदु तक ले जाने में 1जूल कार्य किया जाता है		
	जाता ६ • १ वोल्ट = १ जूल /१ कूलाम or १४=१ ४ ८ ^{-१}	1/2	
	• Talec = 1 of 1 della or 10 = 13 C		3
33	विद्युत आवेग की सीमाएँ:		
	 वे केवल उन कोशिकाओं तक पहुंचते हैं जो तंत्रिका ऊतक से जुड़ी 		
	होती हैं, जंतु शरीर की प्रत्येक कोशिका तक नहीं ।	1	
	 एक बार जब किसी कोशिका में विद्युत आवेग जिनत होता है तथा 		
	संचारित होता है, तो पुनः नया आवेग जनित करने तथा उसे संचारित	1	
	करने के लिए कोशिका फिर से अपनी कार्यविधि को सुचारू करने में		
	कुछ समय लेती है ।		
	(कोई अन्य सीमा)		
	• रासायनिक संचार में संकेत (रासायनिक यौगिक) संभावित रूप से	4	
	शरीर की सभी कोशिकाओं तक स्थिर और लगातार पहुंचते हैं और	I	
	वांछित परिवर्तन प्रदान करते हैं।		3
2.4	खण्ड – ਬ		
34	(A)		
	(A) ((())		
		1	
	1 1 1	_	
	सही दिशा (ii) (a)	1	
	• लाल तार : विधुन्मय तार		
	• काला तार : उदासीन तार		
	• हरा तार : भुसंपर्क तार	½x3	

	(b) 220 V (c) इसका उपयोग सुरक्षा उपाय के रूप में किया जाता है। यह सुनिश्चित करता है कि साधित्र के धातु आवरण में यदि कोई विद्युत धारा का क्षरण हो तो इसका विभव पृथ्वी के विभव के बराबर बना रहे और उपयोगकर्ता को गंभीर झटका न लगे। अथवा (B) (i) (a) चालक AB विस्थापित हो जाता है। b)	1 1	
	- प्रवाहित विद्युत धारा की दिशा उत्क्रमित कर। - चुम्बकीय क्षेत्र की दिशा उत्क्रमित कर। (ii) जब विद्युत् धारा की दिशा चुंबकीय क्षेत्र की दिशा के लम्बव होती है।	1+1	
	(iii) अपने बाएं हाथ के तर्जनी, मध्यमा तथा अंगूठे को इस प्रकार फैलाइए कि ये तीनों एक-दुसरे के परस्पर लंबवत हों। यदि तर्जनी चुंबकीय क्षेत्र की दिशा और मध्यमा चालक में प्रवाहित विद्युत धारा की दिशा की ओर संकेत करती है, तो अंगूठा चालक की गति की दिशा अथवा चालक पर आरोपित बल की ओर संकेत करेगा।	1	5
35	(A) A — वर्तिकाग्र ; B — परागकोश • परागकण से एक पराग नलिका विकसित होती है जो नर यूग्मक को को अंडाशय में स्थित मादा — यूग्मक (अंड कोशिका) तक ले जाती है.	1/2+ 1/2	J
	 जनन कोशिकाओं के संलयन/निषेचन से युग्मनज बनता है । युग्मनज विभाजित होकर बीजांड में भ्रूण बनाता है। बीजाण्ड विकसित होकर बीज में परिवर्तित हो जाता है। अंडाशय तीव्रता से वृधि करता है तथा परिपक्व होकर फल बनाता है। पंखुड़ियाँ, बाह्यदल, पुंकेसर, वर्तिका एवं वर्तिकाग्र प्राय: मुरझा कर गिर जाते हैं । 	1x4	
	अथवा		
	 (B) निषेचन के बाद परिवर्तन: निषेचन के परिणामस्वरूप युग्मनज का निर्माण होता है। युग्मनज विभाजित होकर भ्रूण बनाता है जो गर्भाशय की भित्ति में स्थापित हो जाता है। भ्रूण लगातार वृधि करता है और प्लेसेंटा के माध्यम से पोषण प्राप्त करता रहता है 	1x3	
	प्लैसेंटा की भूमिका – - माँ के रुधिर से भ्रूण को ऑक्सीजन और ग्लूकोज प्रदान करना		

	-	ı	,
	- विकसित होते भ्रूण द्वारा उत्पन्न अपशिष्ट पदार्थों का निपटान	1	
	जब अंड का निषेचिन नहीं होता है : • गर्भाशय की पर्त् धीरे-धीरे टूटकर योनि मार्ग से रुधिर एवं म्यूकस के रूप में निष्कासित होती है / ऋतुस्त्राव अथवा रजोधर्म धर्म होगा।	1	5
36	(A) H H - यौगिक A: एथेनॉल/इथाइल ऐल्कोहल; H - C - C - OH / CH₃CH₂OH H H	1/2; 1/2	
	H H	1/2;1/2	
	H H H − C − C − H • यौगिक C: एथेन ; H H / C ₂ H ₆	1/2;1/2	
	• CH ₃ CH ₂ OH $\frac{Hot\ Conc\ H_2S_{\Omega_4}}{}$ CH ₂ = CH ₂ + H ₂ O 'A' 'B'	1/2	
	 सांद्र H₂SO₄ एक निर्जलीकारक के रूप में काम करता है 	1/2	
	$\begin{array}{c} H & H \\ \mid & \mid \\ H - C = C - H + H_2 \xrightarrow{\text{Ni}} \text{CH}_3 - \text{CH}_3 \\ \text{'B'} & \text{'C'} \end{array}$	1/2	
	• C ₂ H ₆ + 7/2 O ₂ —— > 2CO ₂ + 3H ₂ O	1/2	
	'C' (संतुलन के लिए अंक ना काटे जाएँ)		
	अथवा		

5
4

	- उदासीन	1/2	
	- क्योंकि यह प्रबल अम्ल और प्रबल क्षार का लवण है।	1/2	
	(iii) (A)		
	 सोडियम क्लोराइड (लवण जल) का जलीय विलयन वियोजित 	1/2	
	(विद्युत अपघटन) होकर उत्पन्न करता है:	/2	
	 कैथोड के पास NaOH विलयन 		
	 एनोड पर Cl₂ 		
	 ऐगाड पर Cl₂ कैथोड पर H₂ 	½ x3	
	• \$\phi \qquad \qqqq \qqqqqqqqqqqqqqqqqqqqqqqqqqqqqq		
	अथवा		
	(iii)(B)		
	सोडियम क्लोराइड से धोने का सोडा निम्नलिखित अभिक्रियाओं द्वारा प्राप्त		
	किया जाता है:		
	$-NaCl + H2O + CO2 + NH3 \longrightarrow NH4Cl + NaHCO3$		
	-2NaHCO ₃ $\xrightarrow{\text{Heat}}$ Na ₂ CO ₃ + H ₂ O + CO ₂		
	- सोडियम कार्बोनेट के पुनःक्रिस्टलीकरण से धोने का सोडा प्राप्त होता है।	½ x 4	
	$-Na2CO3 + 10H2O \longrightarrow Na2CO3 .10H2O$		4
39	(i) प्रतिवर्ती क्रिया.:	1/2	4
	 पर्यावरण में किसी घटना की अनुक्रिया के फ़लस्वरूप अचानक हुई 		
	• प्यावरण माकसा घटना का अनुष्रिया के फ़लस्वरूप अयानक हुई क्रिया ।	1/2	
	(ii)	1/	
	(a) प्रेरक तंत्रिका – मेरुरज्जु से कार्यकरअंग/पेशी तक संदेश पहुंचाती है ।	½ ½	
	(b) प्रतिसारण तंत्रिका – संवेदी तंत्रिका को प्रेरक तंत्रिका से जोड़ती है।	72	
	(iii)(A)		
	- केन्द्रीय तंत्रिका तंत्र.		
	संघटक: मस्तिष्क; मेरुरज्जु ,		
	-परिधीय तंत्रिका तंत्र	½ x4	
	संघटक: कपाल तंत्रिकाएँ; मेरु तंत्रिकाएँ.		
	अथवा		
	(iii)(B)		
	(a)अग्र्मस्तिष्क / प्रमस्तिष्क		
	(b)अनुमस्तिष्क / पश्च मस्तिष्क		
	(c)मेडुला / पश्च मस्तिष्क	½ x4	
	(८)मञ्जूरा / पञ्च माराज्यः (d)अग्रमस्तिष्क		
	(-) - (4

